欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

PCA简化数据

程序员文章站 2022-07-16 18:19:47
...

【概念】

PCA(principal componentsanalysis)即主成分分析技术,又称主成分分析。主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。

在统计学中,主成分分析PCA是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征.这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面.但是,这也不是一定的,要视具体应用而定.

【方法】

(1) 第一步计算矩阵 X 的样本的协方差矩阵 S(此为不标准PCA,标准PCA计算相关系数矩阵C) :

(2) 第二步计算协方差矩阵S(或C)的特征向量 e1,e2,…,eN和特征值 , t =1,2,…,N ;

(3)第三步投影数据到特征向量张成的空间之中。利用公式PCA简化数据,其中BV值是原样本中对应维度的值。


PCA 的目标是寻找 r ( r<n )个新变量,使它们反映事物的主要特征,压缩原有数据矩阵的规模,将特征向量的维数降低,挑选出最少的维数来概括最重要特征。每个新变量是原有变量的线性组合,体现原有变量的综合效果,具有一定的实际含义。这 r 个新变量称为“主成分”,它们可以在很大程度上反映原来 n 个变量的影响,并且这些新变量是互不相关的,也是正交的。通过主成分分析,压缩数据空间,将多元数据的特征在低维空间里直观地表示出来。

【示例】:PCA对半导体数据进行降维

  我们知道,像集成电路这样的半导体,成本非常昂贵。如果能在制造过程中尽早和尽快地检测出是否出现瑕疵,将可能为企业节省大量的成本和时间。那么,我们在面对大规模和高维度数据集时,显然计算损耗会很大,无疑会非常耗时。所以,如果利用PCA等降维技术将高维的数据特征进行降维处理,保留那些最重要的数据特征,舍弃那些可以忽略的特征,将大大加快我们的数据处理速度和计算损耗,为企业节省不小的时间和成本。

1 数据缺失值的问题

显然,数据集中可能会包含很多缺失值,这些缺失值是以NaN进行标识的。那么如何对待这些缺失值呢?如果存在大量的样本存在缺失值,显然选择将这些有缺失值得样本丢弃不可取;此外,由于并不知道这些值的意义,选择将缺失值替换为0也不是一个很好的决定。所以,这里我们选择将数据集中的特征缺失值,用数据集中该维度所有非NaN特征的均值进行替换。相比之下,采用均值替换的方法在这里是一个相对较好的选择。

#缺失值处理函数
def replaceNaNWithMean():
    #解析数据
    datMat=loadDataSet('secom.data',' ')
   #获取特征维度     
    numFeat=shape(datMat)[1]
    #遍历数据集每一个维度
    for i in range(numFeat):
        #利用该维度所有非NaN特征求取均值
        meanVal=mean(datMat[nonzero(~isnan(datMat[:,i].A))[0],i])
        #将该维度中所有NaN特征全部用均值替换
        datMat[nonzero(isnan(datMat[:,i].A))[0],i]=meanVal
return datMat

 这样,我们就去除了所有NaN特征,接下来就可以对数据集利用PCA算法进行降维处理了。

2 PCA降维

那么我们如果确定需要保留哪些重要特征呢?PCA函数可以给出数据所包含的信息量,然后通过定量的计算数据中所包含的信息决定出保留特征的比例。下面是具体代码:

dataMat=pca.replaceNanWithMean()
meanVals=mean(dataMat,axis=0)
meanRemoved=dataMat-meanVals
conMat=cov(meanRemoved,rowvar=0)
eigVals,eigVects=linalg.eig(mat(covMat))

PCA简化数据

从上面的特征值结果,我们可以看到如下几个重要信息:

(1)里面有很多值都是0,这意味着这些特征都是其他特征的副本,都可以通过其他特征来表示,其本身没有提供额外的信息。

(2)可以看到最前面的15个特征值得数量级都大于105,而后面的特征值都变得非常小。这表明,所有特征中只有部分特征是重要特征。

  下图示出了数据集前20个主成分占总方差的百分比:

PCA简化数据

可以看出,数据的绝大部分方差都包含在前面的几个主成分中,舍弃后面的主成分并不会损失太多的信息。如果只保留前面几个最重要的主成分,那么在保留了绝大部分信息的基础上,可以将数据集特征压缩到一个非常低的程度,显然大大提高了计算效率。

  下表是数据集前20个主成分所占的总方差百分比,以及累计方差百分比:


PCA简化数据

  一旦,通过特征值分析知道了需要保留的主成分个数,那么我们就可以通过pca函数,设定合适的N值,使得函数最终将数据特征降低到最佳的维度。

【总结】

(1)降维是一种数据集预处理技术,往往在数据应用在其他算法之前使用,它可以去除掉数据的一些冗余信息和噪声,使数据变得更加简单高效,提高其他机器学习任务的计算效率。

(2)pca可以从数据中识别主要特征,通过将数据坐标轴旋转到数据角度上那些最重要的方向(方差最大);然后通过特征值分析,确定出需要保留的主成分个数,舍弃其他主成分,从而实现数据的降维。

【参考文献】

1.百度百科. pca技术[EB/OL].https://baike.baidu.com/item/pca%E6%8A%80%E6%9C%AF/10408698?fr=aladdin.

2.笨鸟多学. 机器学习实战之PCA[EB/OL].https://www.cnblogs.com/zy230530/p/7074215.html.