最长公共子序列、最长连续公共子序列、最长递增子序列
面试中除了排序问题,还会经常出现字符串的子序列问题,这里讲解使用动态规划解决三个常见的子序列问题:
1、最长公共子序列问题(LCS,longest-common-subsequence problem)
2、最长连续公共子序列问题
3、最长递增子序列(LIS,longest-increment-subsequence)
最长公共子序列问题LCS
问题描述:
给定两个序列X=<>和Y=<>,求X和Y的最长公共子序列。(子序列可以是不连续的,比如{B,C,D,B}就是{A,B,C,B,D,A,B}的子序列)
例如:输入两个字符串 BDCABA 和 ABCBDAB,字符串 BCBA 和 BDAB 都是是它们的最长公共子序列,则输出它们的长度 4,并打印任意一个子序列。
动态规划
时间复杂度O(M*N),空间复杂度O(M*N)。
在使用动态规划之前先规定一下符号,给定一个序列X=<>,定义为X的前缀,即=<>。
在求X=<>和Y=<>的一个LCS时,我们需要求解一个或者两个子问题。如果,那么我们应该求解的一个LCS。如果,我们必须求解两个子问题:求和的一个LCS与和的一个LCS。两个LCS中较长的一个,即为X和Y的一个LCS,经过推理可知,这些子情况覆盖了所有可能出现的情况。
所以递推公式为:
具体到实际的例子中:
代码
public class LCS {
public static int[][] lengthofLCS(char[] X, char[] Y){
/* 构造二维数组c[][]记录X[i]和Y[j]的LCS长度 (i,j)是前缀
* c[i][j]=0; 当 i = j = 0;
* c[i][j]=c[i-1][j-1]+1; 当 i = j > 0; Xi == Y[i]
* c[i][j]=max(c[i-1][j],c[i][j+1]); 当 i = j > 0; Xi != Y[i]
* 需要计算 m*n 个子问题的长度 即 任意c[i][j]的长度
* -- 填表过程
*/
int[][]c = new int[X.length+1][Y.length+1];
// 动态规划计算所有子问题
for(int i=1;i<=X.length;i++){
for (int j=1;j<=Y.length;j++){
if(X[i-1]==Y[j-1]){
c[i][j] = c[i-1][j-1]+1;
}
else if(c[i-1][j] >= c[i][j-1]){
c[i][j] = c[i-1][j];
}
else{
c[i][j] = c[i][j-1];
}
}
}
// 打印C数组
for(int i=0;i<=X.length;i++){
for (int j=0;j<=Y.length;j++){
System.out.print(c[i][j]+" ");
}
System.out.println();
}
return c;
}
// 输出LCS序列
public static void print(int[][] arr, char[] X, char[] Y, int i, int j) {
if(i == 0 || j == 0)
return;
if(X[i-1] == Y[j-1]) {
System.out.print("element " + X[i-1] + " ");
print(arr, X, Y, i-1, j-1);
}else if(arr[i-1][j] >= arr[i][j-1]) {
print(arr, X, Y, i-1, j);
}else{
print(arr, X, Y, i, j-1);
}
}
public static void main(String[] args) {
// TODO Auto-generated method stub
char[] x ={'A','B','C','B','D','A','B'};
char[] y ={'B','D','C','A','B','A'};
int[][] c = lengthofLCS(x,y);
print(c, x, y, x.length, y.length);
}
}
最长公共连续子序列(最长公共子串)
问题描述
给定两个序列X=<>和Y=<>,求X和Y的最长公共公共子序列。(连续子序列必须连续的)
例如:输入两个字符串 acbac和 acaccbabb,则最大连续子串为 “cba”, 则返回长度 3。
动态规划
时间复杂度O(M*N),空间复杂度O(M*N)。
这个 LCS 跟前面说的最长公共子序列的 LCS 不一样,不过也算是 LCS 的一个变体,在 LCS 中,子序列是不必要求连续的,而子串则是 “连续” 的。
我们还是像之前一样 “从后向前” 考虑是否能分解这个问题,类似最长公共子序列的分析,这里,我们使用c[i,j] 表示 以 Xi 和 Yj 结尾的最长公共子串的长度,因为要求子串连续,所以对于 Xi 与 Yj 来讲,它们要么与之前的公共子串构成新的公共子串;要么就是不构成公共子串。故状态转移方程:
代码
public class LCString {
public static int lengthofLCString(String X, String Y){
/* 构造二维数组c[][]记录X[i]和Y[j]的LCS长度 (i,j)是前缀
* c[i][j]=0; 当 i = j = 0;
* c[i][j]=c[i-1][j-1]+1; 当 i = j > 0; Xi == Y[i]
* c[i][j]=0; 当 i = j > 0; Xi != Y[i]
* 需要计算 m*n 个子问题的长度 即 任意c[i][j]的长度
* -- 填表过程
*/
int[][]c = new int[X.length()+1][Y.length()+1];
int maxlen = 0;
int maxindex = 0;
for(int i =1;i<=X.length();i++){
for(int j=1;j<=Y.length();j++){
if(X.charAt(i-1) == Y.charAt(j-1)){
c[i][j] = c[i-1][j-1]+1;
if(c[i][j] > maxlen)
{
maxlen = c[i][j];
maxindex = i + 1 - maxlen;
}
}
}
}
return maxlen;
}
public static void main(String[] args) {
String X = "acbac";
String Y = "acaccbabb";
System.out.println(lengthofLCString(X,Y));
}
}
最长递增子序列(longest-common-subsequence)
问题描述
给定一个序列X=<>,求X的最长递增子序列。(子序列可以是不连续的,比如{5,6,7,1,2,8} 的LIS是5,6,7,8
动态规划
时间复杂度O(N^2),空间复杂度O(N)。
DP[i]怎么计算?
遍历所有j < i的元素,检查是否DP[j]+1>DP[i] && arr[j] < arry[i] 若是,则可以更新DP[i]
以{5,6,7,1,2,8} 的LIS是5,6,7,8举例:
如何选取DP[5]的值呢?就是在所有8之前的小于8的值(即j < i && arr[j] < arry[i])中,选择dp[j]最大的值,
DP[i] = DP[j] + 1
DP[5] = DP[2] + 1 = 3 + 1 = 4
代码
int maxLength = 1, bestEnd = 0;
DP[0] = 1;
prev[0] = -1;
for (int i = 1; i < N; i++)
{
DP[i] = 1;
prev[i] = -1;
for (int j = i - 1; j >= 0; j--)
if (DP[j] + 1 > DP[i] && array[j] < array[i])
{
DP[i] = DP[j] + 1;
prev[i] = j;
}
if (DP[i] > maxLength)
{
bestEnd = i;
maxLength = DP[i];
}
上一篇: P1563 玩具谜题
下一篇: 最长公共子序列