780-到达终点
Description
A move consists of taking a point (x, y) and transforming it to either (x, x+y) or (x+y, y).
Given a starting point (sx, sy) and a target point (tx, ty), return True if and only if a sequence of moves exists to transform the point (sx, sy) to (tx, ty). Otherwise, return False.
Examples:
Input: sx = 1, sy = 1, tx = 3, ty = 5
Output: True
Explanation:
One series of moves that transforms the starting point to the target is:
(1, 1) -> (1, 2)
(1, 2) -> (3, 2)
(3, 2) -> (3, 5)
Input: sx = 1, sy = 1, tx = 2, ty = 2
Output: False
Input: sx = 1, sy = 1, tx = 1, ty = 1
Output: True
Note:
- sx, sy, tx, ty will all be integers in the range [1, 10^9].
问题描述
一步为将(x, y)转换为(x + y, y)或者(x, x + y)
给定起始点(sx, sy)和终点(tx, ty),如果经过一系列的移动能从起点到终点,返回true,否则返回false
问题分析
从(x, y)出发可以到达的点的可能性非常多,而从(tx, ty)倒着推只有一条路
即,若tx > ty, tx = tx % ty,否则,ty = ty % tx
举个例子
tx = 5, ty = 7
由于tx < ty,上一轮肯定是(x, x + y),因此ty = ty %tx = 2
依次类推,可以得到初始点为(1, 2)
思路
当tx > sx 且 ty > sy时,将tx和ty倒推
若tx = sx 且 (ty - sy) % sx == 0 或者 ty == sy 且 (tx - sx) % sy ==0 .返回true
解法
class Solution {
public boolean reachingPoints(int sx, int sy, int tx, int ty) {
while(tx > sx && ty > sy){
if(ty < tx) tx %= ty;
else ty %= tx;
}
if(sx == tx){
return (ty - sy) % sx == 0;
}else if(sy == ty){
return (tx - sx) % sy == 0;
}
return false;
}
}
上一篇: 机器人大冒险(能否到达终点)
下一篇: 异或运算(只出现一次的数字)