数据压缩实验三:Huffman编解码
程序员文章站
2022-07-14 22:17:30
...
一、基本原理
1.Huffman编码算法
()统计频率:将文件以ASCII字符流的形式读入,统计每个符号的发生频率;
(2)排序:将所有文件中出现过的字符按照频率从小到大的顺序排列;
(3)每一次选出最小的两个值,作为二叉树的两个叶子节点,将和作为它们的根节点,这两个叶子节点不再参与比较,新的根节点参与比较;重复此步骤,直到最后得到和为1的根节点;
(4)编码:将形成的二叉树的左节点标0,右节点标1,把从最上面的根节点到最下面的叶子节点途中遇到的0、1序列串起来,得到了各个字符的编码表示。
2.Huffman编码的数据结构设计
(1)Huffman节点结构
typedef struct huffman_node_tag
{
unsigned char isLeaf;//是否为叶节点,1是0不是
unsigned long count;//信源中出现频数
struct huffman_node_tag *parent;//父节点指针
union
{
struct//如果不是节结点,则此项为该节点左右子节点的指针
{
struct huffman_node_tag *zero, *one;//指向子节点,左0右1
};
unsigned char symbol;//如果是叶节点,则为某个信源符号
};
} huffman_node;
(2)Huffman码结构
typedef struct huffman_code_tag
{
/* The length of this code in bits. */
unsigned long numbits;//码字的长度
/* 码字的第1位存于bits[0]的第1位,
码字的第2位存于bits[0]的第2位,
码字的第8位存于bits[0]的第8位,
码字的第9位存于bits[1]的第1位*/
unsigned char *bits;
} huffman_code;
二、实验流程及代码分析
1.Huffman编码流程
(1)读入待编码的源文件
int
main(int argc, char** argv)
{
char memory = 0;//是否对内存数据进行操作,1操作,0不操作
char compress = 1;//compress为1解码,0编码
int opt;
const char *file_in = NULL, *file_out = NULL;
//step1:add by yzhang for huffman statistics
const char *file_out_table = NULL;
//end by yzhang
FILE *in = stdin;
FILE *out = stdout;
//step1:add by yzhang for huffman statistics
FILE * outTable = NULL;
//end by yzhang
/* Get the command line arguments. */
while((opt = getopt(argc, argv, "i:o:cdhvmt:")) != -1) //读取命令行参数
{
switch(opt)
{
case 'i':
file_in = optarg;//i 输入文件
break;
case 'o':
file_out = optarg;//o 输出文件
break;
case 'c':
compress = 1;//c 编码
break;
case 'd':
compress = 0;//d 解码
break;
case 'h':
usage(stdout);//h 输出参数用法的说明
return 0;
case 'v':
version(stdout);//v 输出版本号的信息
return 0;
case 'm':
memory = 1;//m 对内存数据进行操作
break;
// by yzhang for huffman statistics
case 't':
file_out_table = optarg;//t 输出中间数据信息
break;
//end by yzhang
default:
usage(stderr);
return 1;
}
}
/* If an input file is given then open it. */
if(file_in)//读取输入文件
{
in = fopen(file_in, "rb");
if(!in)
{
fprintf(stderr,
"Can't open input file '%s': %s\n",
file_in, strerror(errno));
return 1;
}
}
/* If an output file is given then create it. */
if(file_out)//创建输出文件
{
out = fopen(file_out, "wb");
if(!out)
{
fprintf(stderr,
"Can't open output file '%s': %s\n",
file_out, strerror(errno));
return 1;
}
}
//by yzhang for huffman statistics
if(file_out_table)
{
outTable = fopen(file_out_table, "w");
if(!outTable)
{
fprintf(stderr,
"Can't open output file '%s': %s\n",
file_out_table, strerror(errno));
return 1;
}
}
//end by yzhang
if(memory)//对内存数据进行编解码操作
{
return compress ?
memory_encode_file(in, out) : memory_decode_file(in, out);
}
if(compress) //change by yzhang
huffman_encode_file(in, out,outTable);//step1:changed by yzhang from huffman_encode_file(in, out) to huffman_encode_file(in, out,outTable)
else
huffman_decode_file(in, out);
if(in)
fclose(in);
if(out)
fclose(out);
if(outTable)
fclose(outTable);
return 0;
}
(2)第一次扫描:统计文件中各个字符出现频率
/*统计信源符号出现概率*/
static unsigned int
get_symbol_frequencies(SymbolFrequencies *pSF, FILE *in)
{
int c;
unsigned int total_count = 0;//初始化信源符号总数使之为0
/* Set all frequencies to 0. */
init_frequencies(pSF);//初始化频率为0
/* Count the frequency of each symbol in the input file. */
while ((c = fgetc(in)) != EOF)//读取文件中每个信源符号
{
unsigned char uc = c;
if (!(*pSF)[uc])
(*pSF)[uc] = new_leaf_node(uc);//若没有此符号,建立新节点
++(*pSF)[uc]->count;//字符发生频数+1
++total_count;//总信源符号数+1
}
return total_count;
}
新建节点函数:new_leaf_node
/*新建结点*/
static huffman_node*
new_leaf_node(unsigned char symbol)
{
huffman_node *p = (huffman_node*)malloc(sizeof(huffman_node));//开辟空间
p->isLeaf = 1;//初始化为叶结点
p->symbol = symbol;
p->count = 0;
p->parent = 0;
return p;
}
(3)建立Huffman树
/*建立Huffman树*/
static SymbolEncoder*
calculate_huffman_codes(SymbolFrequencies * pSF)
{
unsigned int i = 0;
unsigned int n = 0;
huffman_node *m1 = NULL, *m2 = NULL;
SymbolEncoder *pSE = NULL;
#if 1
printf("BEFORE SORT\n");
print_freqs(pSF);
#endif
/* Sort the symbol frequency array by ascending frequency. */
qsort((*pSF), MAX_SYMBOLS, sizeof((*pSF)[0]), SFComp);//使用qshort函数将信源符号按出现频率大小排序,下标小的在前
#if 1
printf("AFTER SORT\n");
print_freqs(pSF);
#endif
/* Get the number of symbols. */
for (n = 0; n < MAX_SYMBOLS && (*pSF)[n]; ++n)//统计种类总数,一个字节8bit,共256种
;
/*
* Construct a Huffman tree. This code is based
* on the algorithm given in Managing Gigabytes
* by Ian Witten et al, 2nd edition, page 34.
* Note that this implementation uses a simple
* count instead of probability.
*/
for (i = 0; i < n - 1; ++i)
{
/* Set m1 and m2 to the two subsets of least probability. */
m1 = (*pSF)[0];
m2 = (*pSF)[1];//将出现次数最少的两个节点设为m1,m2
/* Replace m1 and m2 with a set {m1, m2} whose probability
* is the sum of that of m1 and m2. */
(*pSF)[0] = m1->parent = m2->parent =
new_nonleaf_node(m1->count + m2->count, m1, m2);
(*pSF)[1] = NULL;//合并m1,m2
/* Put newSet into the correct count position in pSF. */
qsort((*pSF), n, sizeof((*pSF)[0]), SFComp);//重新排序
}
/* Build the SymbolEncoder array from the tree. */
pSE = (SymbolEncoder*)malloc(sizeof(SymbolEncoder));
memset(pSE, 0, sizeof(SymbolEncoder));
build_symbol_encoder((*pSF)[0], pSE);//从树根开始构建码字
return pSE;
}
排序函数:SFComp/*将节点按出现概率从小到大排序,qsort函数中用到*/
static int
SFComp(const void *p1, const void *p2)
{
const huffman_node *hn1 = *(const huffman_node**)p1;
const huffman_node *hn2 = *(const huffman_node**)p2;
/*将所有空节点排序 */
if (hn1 == NULL && hn2 == NULL) //两个节点都为空
return 0;//返回0
if (hn1 == NULL)//第一个节点为空,第二个节点大
return 1;//返回1
if (hn2 == NULL)//第二个节点空,第一个节点大
return -1;//返回-1
if (hn1->count > hn2->count)//两个节点都不为空,比较count值,1大于2
return 1;//返回1
else if (hn1->count < hn2->count)//1小于2
return -1;//返回-1
return 0;
}
建立内部节点函数:new_nonleaf_node
/*建立内部节点*/
static huffman_node*
new_nonleaf_node(unsigned long count, huffman_node *zero, huffman_node *one)
{
huffman_node *p = (huffman_node*)malloc(sizeof(huffman_node));
p->isLeaf = 0;//不是叶节点
p->count = count;
p->zero = zero;
p->one = one;
p->parent = 0;
return p;
}
遍历Huffman树,生成码字
/*遍历Huffman树,生成码字*/
static void
build_symbol_encoder(huffman_node *subtree, SymbolEncoder *pSF)
{
if (subtree == NULL)//树为空则返回
return;
if (subtree->isLeaf)//是叶节点,则进行编码
(*pSF)[subtree->symbol] = new_code(subtree);//
else//不是叶节点,则先走左节点,再走右节点
{
build_symbol_encoder(subtree->zero, pSF);//递归
build_symbol_encoder(subtree->one, pSF);
}
}
新建码字函数:new_code
/*新建码字*/
static huffman_code*
new_code(const huffman_node* leaf)
{
/* Build the huffman code by walking up to
* the root node and then reversing the bits,
* since the Huffman code is calculated by
* walking down the tree. */
unsigned long numbits = 0;//码长
unsigned char* bits = NULL;//存储码字的数组
huffman_code *p;
while (leaf && leaf->parent)//从下到上,不是根节点时进入循环
{
huffman_node *parent = leaf->parent;//得到码字位置和码字的字节数
unsigned char cur_bit = (unsigned char)(numbits % 8);
unsigned long cur_byte = numbits / 8;
/* If we need another byte to hold the code,
then allocate it. */
if (cur_bit == 0)
{
size_t newSize = cur_byte + 1;
bits = (char*)realloc(bits, newSize);//新建字节保存高位的码字
bits[newSize - 1] = 0;//新增字节初始化为0
}
/* If a one must be added then or it in. If a zero
* must be added then do nothing, since the byte
* was initialized to zero. */
if (leaf == parent->one)//是否是右节点
bits[cur_byte] |= 1 << cur_bit;//将当前字节设为1
++numbits;//码长+1
leaf = parent;//将下一个节点挪到父节点
}
if (bits)
reverse_bits(bits, numbits);//码字逆序
p = (huffman_code*)malloc(sizeof(huffman_code));
p->numbits = numbits;
p->bits = bits;
return p;
}
码字逆序函数:reverse_bits/*码字逆序*/
static void
reverse_bits(unsigned char* bits, unsigned long numbits)
{
unsigned long numbytes = numbytes_from_numbits(numbits);//码字占用字节数
unsigned char *tmp =
(unsigned char*)alloca(numbytes);//开辟存储空间
unsigned long curbit;
long curbyte = 0;
memset(tmp, 0, numbytes);
for (curbit = 0; curbit < numbits; ++curbit)
{
unsigned int bitpos = curbit % 8;
if (curbit > 0 && curbit % 8 == 0)//判断当前位在字节中的位数,到下一字节则字节数+1
++curbyte;
tmp[curbyte] |= (get_bit(bits, numbits - curbit - 1) << bitpos);//从后往前取每一位再移位
}
memcpy(bits, tmp, numbytes);
}
判断字节数函数:numbytes_from_numbits
static unsigned long
numbytes_from_numbits(unsigned long numbits)
{
return numbits / 8 + (numbits % 8 ? 1 : 0);//确定字节数
}
get_bit返回位数返回值的第 i/8 个字节的第 i%8 位
static unsigned char
get_bit(unsigned char* bits, unsigned long i)
{
return (bits[i / 8] >> i % 8) & 1;//i/8取整,i%8取余,表示第几字节第几位
}
(4)将码表及其他必要信息写入输出文件
/*写入码表*/
static int
write_code_table(FILE* out, SymbolEncoder *se, unsigned int symbol_count)
{
unsigned long i, count = 0;
/* Determine the number of entries in se. */
for (i = 0; i < MAX_SYMBOLS; ++i)//统计码字种类
{
if ((*se)[i])
++count;
}
/* Write the number of entries in network byte order. */
i = htonl(count); //在网络传输中,采用big-endian序,对于0x0A0B0C0D ,传输顺序就是0A 0B 0C 0D ,
//因此big-endian作为network byte order,little-endian作为host byte order。
//little-endian的优势在于unsigned char/short/int/long类型转换时,存储位置无需改变
if (fwrite(&i, sizeof(i), 1, out) != 1)
return 1;
/* Write the number of bytes that will be encoded. */
symbol_count = htonl(symbol_count);
if (fwrite(&symbol_count, sizeof(symbol_count), 1, out) != 1)
return 1;
/* Write the entries. */
for (i = 0; i < MAX_SYMBOLS; ++i)//写入码表
{
huffman_code *p = (*se)[i];
if (p)
{
unsigned int numbytes;
/* Write the 1 byte symbol. */
fputc((unsigned char)i, out);//写入字节符号
/* Write the 1 byte code bit length. */
fputc(p->numbits, out);//写入码长
/* Write the code bytes. */
numbytes = numbytes_from_numbits(p->numbits);//写入码字
if (fwrite(p->bits, 1, numbytes, out) != numbytes)
return 1;
}
}
return 0;
}
(5)第二次扫描:对源文件进行编码并输出
/*第二次扫描,对文件进行编码*/
static int
do_file_encode(FILE* in, FILE* out, SymbolEncoder *se)
{
unsigned char curbyte = 0;
unsigned char curbit = 0;
int c;
while ((c = fgetc(in)) != EOF)
{
unsigned char uc = (unsigned char)c;
huffman_code *code = (*se)[uc];//查表
unsigned long i;
for (i = 0; i < code->numbits; ++i)//将码字写入文件
{
/* Add the current bit to curbyte. */
curbyte |= get_bit(code->bits, i) << curbit;//把当前比特位加到编码字节的相应位置
/* If this byte is filled up then write it
* out and reset the curbit and curbyte. */
if (++curbit == 8)
{
fputc(curbyte, out);
curbyte = 0;
curbit = 0;
}
}
}
2.Huffman解码流程
(1)读入解码文件,提取必要信息,依照码表重建Huffman树
/*对文件解码,读取码表*/
static huffman_node*
read_code_table(FILE* in, unsigned int *pDataBytes)
{
huffman_node *root = new_nonleaf_node(0, NULL, NULL);
unsigned int count;
/* Read the number of entries.
(it is stored in network byte order). */
if (fread(&count, sizeof(count), 1, in) != 1)//读取码表中的符号数
{
free_huffman_tree(root);
return NULL;
}
count = ntohl(count);
/* Read the number of data bytes this encoding represents. */
if (fread(pDataBytes, sizeof(*pDataBytes), 1, in) != 1)
{
free_huffman_tree(root);
return NULL;
}
*pDataBytes = ntohl(*pDataBytes);
/* Read the entries. */
while (count-- > 0)//读取码表:符号,码长,码字
{
int c;
unsigned int curbit;
unsigned char symbol;
unsigned char numbits;
unsigned char numbytes;
unsigned char *bytes;
huffman_node *p = root;
if ((c = fgetc(in)) == EOF)//一个字节一个字节地读入
{
free_huffman_tree(root);
return NULL;
}
symbol = (unsigned char)c;
if ((c = fgetc(in)) == EOF)
{
free_huffman_tree(root);
return NULL;
}
numbits = (unsigned char)c;
numbytes = (unsigned char)numbytes_from_numbits(numbits);//计算存储一个码长需要多少字节
bytes = (unsigned char*)malloc(numbytes);//开辟空间
if (fread(bytes, 1, numbytes, in) != numbytes)//读取码字
{
free(bytes);
free_huffman_tree(root);
return NULL;
}
/*
* Add the entry to the Huffman tree. The value
* of the current bit is used switch between
* zero and one child nodes in the tree. New nodes
* are added as needed in the tree.
*/
for (curbit = 0; curbit < numbits; ++curbit)//根据码表建立码树
{
if (get_bit(bytes, curbit))//当前位为1建立右节点
{
if (p->one == NULL)
{
//如果是最后一位,则建立树叶节点,不是则建立非叶节点
p->one = curbit == (unsigned char)(numbits - 1)
? new_leaf_node(symbol)
: new_nonleaf_node(0, NULL, NULL);
p->one->parent = p;
}
p = p->one;
}
else//否则建立左节点
{
if (p->zero == NULL)
{
p->zero = curbit == (unsigned char)(numbits - 1)
? new_leaf_node(symbol)
: new_nonleaf_node(0, NULL, NULL);
p->zero->parent = p;
}
p = p->zero;
}
}
free(bytes);
}
return root;//返回根节点
}
(2)根据Huffman树进行解码
/*解码过程*/
int
huffman_decode_file(FILE *in, FILE *out)
{
huffman_node *root, *p;
int c;
unsigned int data_count;
/* Read the Huffman code table. */
root = read_code_table(in, &data_count);//读取码表
if (!root)
return 1;
/*文件解码 */
p = root;
while (data_count > 0 && (c = fgetc(in)) != EOF)
{
unsigned char byte = (unsigned char)c;
unsigned char mask = 1;//逐位读码字
while (data_count > 0 && mask)
{
p = byte & mask ? p->one : p->zero;
mask <<= 1;//左移1位
if (p->isLeaf)
{
fputc(p->symbol, out);//输出叶节点存储符号
p = root;//转到根节点
--data_count;//没解码符号数-1
}
}
}
free_huffman_tree(root);
return 0;
}
三、实验结果
(1)表格形式
注意:计算平均码长时不是仅仅算码长的平均值,而要用概率*码长再求和。
由上表可以发现,Huffman编码的平均码长略大于信源熵但很接近。
(2)各样本文件的概率分布图
由概率分布图和表格比较得出,概率分布越均匀(如例pptx文件),压缩比越低,压缩效果越差。