数据压缩实验三
实验原理
一、熵
在信息论中,熵是信息的度量单位。信息论的创始人shannon在其著作《通信的数学理论》中提出了建立在概率统计模型上的信息度量。他把信息定义为“用来消除不确定性的东西”。 一般用符号 H 表示,单位是比特。变量的不确定性越大,熵也就越大。换句话说,了解它所需要的信息量也就越大。 Huffman Coding (霍夫曼编码)是一种无失真编码的编码方式,Huffman 编码是可变字长编码(VLC)的一种。Huffman 编码基于信源的概率统计模型,它的基本思路是,出现概率大的信源符号编长码,出现概率小的信源符号编短码,从而使平均码长最小。在程序实现中常使用一种叫做树的数据结构实现 Huffman 编码,由它编出的码是即时码。
二、 Huffman 编码
实验流程
1、统计符号的发生概率;
2、把频率按从小到大的顺序排列
3、每一次选出最小的两个值,作为二叉树的两个叶子节点,将和作为它们的根节点,这两个叶子节点不再参与比较,新的根节点参与比较;
4、 重复 3,直到最后得到和为 1 的根节点;
5、将形成的二叉树的左节点标 0,右节点标 1,把从最上面的根节点到最下面的叶子节点途中遇到的 0,1 序列串起来,就得到了各个符号的编码。
关键代码及其分析
huff code.c
//定义数据类型
//节点
typedef struct huffman_node_tag
{
unsigned char isLeaf;//判断是否是叶节点
unsigned long count;//出现次数
struct huffman_node_tag *parent;
union
{
struct
{
struct huffman_node_tag *zero, *one;//左0右1
};
unsigned char symbol;
};
} huffman_node;
//码字数据类型
typedef struct huffman_code_tag
{
/* The length of this code in bits. */
unsigned long numbits;//长度
/* The bits that make up this code. The first
bit is at position 0 in bits[0]. The second
bit is at position 1 in bits[0]. The eighth
bit is at position 7 in bits[0]. The ninth
bit is at position 0 in bits[1]. */
unsigned char *bits;
} huffman_code;
static unsigned long
numbytes_from_numbits(unsigned long numbits)
{
return numbits / 8 + (numbits % 8 ? 1 : 0);//确定字节数
}
/*
* get_bit returns the ith bit in the bits array
* in the 0th position of the return value.
*/
static unsigned char
get_bit(unsigned char* bits, unsigned long i)
{
return (bits[i / 8] >> i % 8) & 1;
//i/8取整,i%8取余,表示第几字节第几位
}
//码字逆序
static void
reverse_bits(unsigned char* bits, unsigned long numbits)
{
unsigned long numbytes = numbytes_from_numbits(numbits);//码字占用字节数
unsigned char *tmp =
(unsigned char*)alloca(numbytes);//开辟空间
unsigned long curbit;
long curbyte = 0;
memset(tmp, 0, numbytes);
for (curbit = 0; curbit < numbits; ++curbit)
{
unsigned int bitpos = curbit % 8;
if (curbit > 0 && curbit % 8 == 0)//判断当前位在字节中的位数
++curbyte;//到下一字节
tmp[curbyte] |= (get_bit(bits, numbits - curbit - 1) << bitpos);//从后往前取每一位再移位
}
memcpy(bits, tmp, numbytes);
}
//新建码字
static huffman_code*
new_code(const huffman_node* leaf)
{
/* Build the huffman code by walking up to
* the root node and then reversing the bits,
* since the Huffman code is calculated by
* walking down the tree. */
unsigned long numbits = 0;//码长
unsigned char* bits = NULL;//存储码字的数组
huffman_code *p;
while (leaf && leaf->parent)//不是根节点
{
huffman_node *parent = leaf->parent;//得到码字位置和码字的字节数
unsigned char cur_bit = (unsigned char)(numbits % 8);
unsigned long cur_byte = numbits / 8;
/* If we need another byte to hold the code,
then allocate it. */
if (cur_bit == 0)
{
size_t newSize = cur_byte + 1;
bits = (char*)realloc(bits, newSize);//新建字节保存高位的码字
bits[newSize - 1] = 0;//新增字节初始化为0
}
if (leaf == parent->one)//是否是右节点
bits[cur_byte] |= 1 << cur_bit;//将当前字节设为1
++numbits;//码长++
leaf = parent;//将下一个节点挪到父节点
}
if (bits)
reverse_bits(bits, numbits);//码字逆序
p = (huffman_code*)malloc(sizeof(huffman_code));
p->numbits = numbits;
p->bits = bits;
return p;
}
#define MAX_SYMBOLS 256
typedef huffman_node* SymbolFrequencies[MAX_SYMBOLS];//信源符号数组
typedef huffman_code* SymbolEncoder[MAX_SYMBOLS];//编码后符号数组
//新建结点
static huffman_node*
new_leaf_node(unsigned char symbol)
{
huffman_node *p = (huffman_node*)malloc(sizeof(huffman_node));//开辟空间
p->isLeaf = 1;
//为叶结点
p->symbol = symbol;
p->count = 0;
p->parent = 0;
return p;
}
//建立内部节点
static huffman_node*
new_nonleaf_node(unsigned long count, huffman_node *zero, huffman_node *one)
{
huffman_node *p = (huffman_node*)malloc(sizeof(huffman_node));
p->isLeaf = 0;//不是叶节点
p->count = count;
p->zero = zero;
p->one = one;
p->parent = 0;
return p;
}
//统计信源符号概率
static unsigned int
get_symbol_frequencies(SymbolFrequencies *pSF, FILE *in)
{
int c;
unsigned int total_count = 0;
/* Set all frequencies to 0. */
init_frequencies(pSF);//初始化频率为0
while ((c = fgetc(in)) != EOF)//读取文件中每个信源符号
{
unsigned char uc = c;
if (!(*pSF)[uc])
(*pSF)[uc] = new_leaf_node(uc);//若没有此符号,建立新节点
++(*pSF)[uc]->count;//累计发生次数
++total_count;//累计信源发生次数
}
return total_count;
}
//将节点按出现概率从小到大排序,qsort函数中用到
static int
SFComp(const void *p1, const void *p2)
{
const huffman_node *hn1 = *(const huffman_node**)p1;
const huffman_node *hn2 = *(const huffman_node**)p2;
//将所有空节点排序
if (hn1 == NULL && hn2 == NULL) //两个节点都为空
return 0;//返回0
if (hn1 == NULL)//第一个节点为空,第二个节点大
return 1;//返回1
if (hn2 == NULL)//第二个节点空,第一个节点大
return -1;//返回-1
if (hn1->count > hn2->count)//两个节点都不为空,比较count值,1大于2
return 1;//返回1
else if (hn1->count < hn2->count)//1小于2
return -1;//返回-1
return 0;
}
/*
* build_symbol_encoder builds a SymbolEncoder by walking
* down to the leaves of the Huffman tree and then,
* for each leaf, determines its code.
*/
//生成码字
static void
build_symbol_encoder(huffman_node *subtree, SymbolEncoder *pSF)
{
if (subtree == NULL)//树为空则返回
return;
if (subtree->isLeaf)//叶节点进行编码
(*pSF)[subtree->symbol] = new_code(subtree);
else//不是叶节点先走左节点
{
build_symbol_encoder(subtree->zero, pSF);
build_symbol_encoder(subtree->one, pSF);
}
}
/*
* calculate_huffman_codes turns pSF into an array
* with a single entry that is the root of the
* huffman tree. The return value is a SymbolEncoder,
* which is an array of huffman codes index by symbol value.
*/
//建立Huffman树
static SymbolEncoder*
calculate_huffman_codes(SymbolFrequencies * pSF)
{
unsigned int i = 0;
unsigned int n = 0;
huffman_node *m1 = NULL, *m2 = NULL;
SymbolEncoder *pSE = NULL;
#if 1
printf("BEFORE SORT\n");
print_freqs(pSF);
#endif
qsort((*pSF), MAX_SYMBOLS, sizeof((*pSF)[0]), SFComp);//使用qshort函数将信源符号按出现频率大小排序,下标小的在前
#if 1
printf("AFTER SORT\n");
print_freqs(pSF);
#endif
for (n = 0; n < MAX_SYMBOLS && (*pSF)[n]; ++n)//统计种类总数,一个字节8bit,共256种
;
/*
* Construct a Huffman tree. This code is based
* on the algorithm given in Managing Gigabytes
* by Ian Witten et al, 2nd edition, page 34.
* Note that this implementation uses a simple
* count instead of probability.
*/
for (i = 0; i < n - 1; ++i)
{
m1 = (*pSF)[0];
m2 = (*pSF)[1];//将出现次数最少的两个节点设为m1,m2
/* Replace m1 and m2 with a set {m1, m2} whose probability
* is the sum of that of m1 and m2. */
(*pSF)[0] = m1->parent = m2->parent =
new_nonleaf_node(m1->count + m2->count, m1, m2);
(*pSF)[1] = NULL;
qsort((*pSF), n, sizeof((*pSF)[0]), SFComp);//重新排序
}
/* Build the SymbolEncoder array from the tree. */
pSE = (SymbolEncoder*)malloc(sizeof(SymbolEncoder));
memset(pSE, 0, sizeof(SymbolEncoder));
build_symbol_encoder((*pSF)[0], pSE);//从树根开始构建码字
return pSE;
}
/*写入码表*/
static int
write_code_table(FILE* out, SymbolEncoder *se, unsigned int symbol_count)
{
unsigned long i, count = 0;
/* Determine the number of entries in se. */
for (i = 0; i < MAX_SYMBOLS; ++i)//统计码字种类
{
if ((*se)[i])
++count;
}
/* Write the number of entries in network byte order. */
i = htonl(count); //在网络传输中,采用big-endian序,对于0x0A0B0C0D ,传输顺序就是0A 0B 0C 0D ,
//因此big-endian作为network byte order,little-endian作为host byte order。
//little-endian的优势在于unsigned char/short/int/long类型转换时,存储位置无需改变
if (fwrite(&i, sizeof(i), 1, out) != 1)
return 1;
/* Write the number of bytes that will be encoded. */
symbol_count = htonl(symbol_count);
if (fwrite(&symbol_count, sizeof(symbol_count), 1, out) != 1)
return 1;
/* Write the entries. */
for (i = 0; i < MAX_SYMBOLS; ++i)//写入码表
{
huffman_code *p = (*se)[i];
if (p)
{
unsigned int numbytes;
/* Write the 1 byte symbol. */
fputc((unsigned char)i, out);//写入字节符号
/* Write the 1 byte code bit length. */
fputc(p->numbits, out);//写入码长
/* Write the code bytes. */
numbytes = numbytes_from_numbits(p->numbits);//写入码字
if (fwrite(p->bits, 1, numbytes, out) != numbytes)
return 1;
}
}
return 0;
}
//对文件解码,读取码表
static huffman_node*
read_code_table(FILE* in, unsigned int *pDataBytes)
{
huffman_node *root = new_nonleaf_node(0, NULL, NULL);
unsigned int count;
/* Read the number of entries.
(it is stored in network byte order). */
if (fread(&count, sizeof(count), 1, in) != 1)//读取码表中的符号数
{
free_huffman_tree(root);
return NULL;
}
count = ntohl(count);
/* Read the number of data bytes this encoding represents. */
if (fread(pDataBytes, sizeof(*pDataBytes), 1, in) != 1)
{
free_huffman_tree(root);
return NULL;
}
*pDataBytes = ntohl(*pDataBytes);
/* Read the entries. */
while (count-- > 0)//读取码表
{
int c;
unsigned int curbit;
unsigned char symbol;
unsigned char numbits;
unsigned char numbytes;
unsigned char *bytes;
huffman_node *p = root;
if ((c = fgetc(in)) == EOF)//读入
{
free_huffman_tree(root);
return NULL;
}
symbol = (unsigned char)c;
if ((c = fgetc(in)) == EOF)
{
free_huffman_tree(root);
return NULL;
}
numbits = (unsigned char)c;
numbytes = (unsigned char)numbytes_from_numbits(numbits);//计算存储一个码长需要多少字节
bytes = (unsigned char*)malloc(numbytes);//开辟空间
if (fread(bytes, 1, numbytes, in) != numbytes)//读取码字
{
free(bytes);
free_huffman_tree(root);
return NULL;
}
/*
* Add the entry to the Huffman tree. The value
* of the current bit is used switch between
* zero and one child nodes in the tree. New nodes
* are added as needed in the tree.
*/
for (curbit = 0; curbit < numbits; ++curbit)
{
if (get_bit(bytes, curbit))//为1建右节点
{
if (p->one == NULL)
{
p->one = curbit == (unsigned char)(numbits - 1)
? new_leaf_node(symbol)
: new_nonleaf_node(0, NULL, NULL);
p->one->parent = p;
//如果是最后一位,则建立树叶节点,不是则建立非叶节点
}
p = p->one;
}
else//建立左节点
{
if (p->zero == NULL)
{
p->zero = curbit == (unsigned char)(numbits - 1)
? new_leaf_node(symbol)
: new_nonleaf_node(0, NULL, NULL);
p->zero->parent = p;
}
p = p->zero;
}
}
free(bytes);
}
return root;//返回根节点
}
//解码
int
huffman_decode_file(FILE *in, FILE *out)
{
huffman_node *root, *p;
int c;
unsigned int data_count;
root = read_code_table(in, &data_count);//读取码表
if (!root)
return 1;
p = root;
while (data_count > 0 && (c = fgetc(in)) != EOF)
{
unsigned char byte = (unsigned char)c;
unsigned char mask = 1;//逐位读码字
while (data_count > 0 && mask)
{
p = byte & mask ? p->one : p->zero;
mask <<= 1;//左移1位
if (p->isLeaf)
{
fputc(p->symbol, out);//输出叶节点存储符号
p = root;//转到根节点
--data_count;//没解码符号数-——
}
}
}
free_huffman_tree(root);
return 0;
}
//huffman.c
main(int argc, char** argv) { char memory = 0;//1对内存数据进行操作,0不操作 char compress = 1;//1解码,0编码 int opt; const char *file_in = NULL, *file_out = NULL; //step1:add by yzhang for huffman statistics const char *file_out_table = NULL; //end by yzhang FILE *in = stdin; FILE *out = stdout; //step1:add by yzhang for huffman statistics FILE * outTable = NULL; //end by yzhang /* Get the command line arguments. */ while((opt = getopt(argc, argv, "i:o:cdhvmt:")) != -1) //读取命令行参数 { switch(opt) { case 'i': file_in = optarg;//输入文件 break; case 'o': file_out = optarg;//输出文件 break; case 'c': compress = 1;//编码 break; case 'd': compress = 0;//解码 break; case 'h': usage(stdout);//输出参数用法的说明 return 0; case 'v': version(stdout);//输出版本号的信息 return 0; case 'm': memory = 1;//对内存数据进行操作 break; // by yzhang for huffman statistics case 't': file_out_table = optarg;//输出中间数据信息 break; //end by yzhang default: usage(stderr); return 1; } } if(file_in)//输入文件 { in = fopen(file_in, "rb"); if(!in) { fprintf(stderr, "Can't open input file '%s': %s\n", file_in, strerror(errno)); return 1; } } /* If an output file is given then create it. */ if(file_out)//创建输出文件 { out = fopen(file_out, "wb"); if(!out) { fprintf(stderr, "Can't open output file '%s': %s\n", file_out, strerror(errno)); return 1; } } 。。。
}
实验结果
观察可得平均码长和熵的值很接近,与此同时如果文件过小,则很有可能出现huffman编码之后文件变大的情况,由于还有码表的存在,很占空间。