欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

hive数据倾斜

程序员文章站 2022-07-14 21:12:11
...

造成数据倾斜的原因:

key 分布不均匀

业务数据本身的特性

建表考虑不周全

某些 HQL 语句本身就存在数据倾斜

产生数据倾斜的业务场景

1.空值产生的数据倾斜

在日志中,常会有信息丢失的问题,比如日志中的 user_id,如果取其中的 user_id 和用户表中的 user_id 相关联,就会碰到数据倾斜的问题。

解决方案 1:user_id 为空的不参与关联

select * from log a join user b on a.user_id is not null and a.user_id = b.user_id

解决方案 2 赋予空值新的 key 值

select * from log a left outer join user b on
case when a.user_id is null then concat('hive',rand()) else a.user_id end = b.user_id

把空值的 key 变成一个字符串加上一个随机数,就能把造成数据倾斜的 数据分到不同的 reduce 上解决数据倾斜的问题。

2.不同数据类型关联产生数据倾斜
用户表中 user_id 字段为 int,log 表中 user_id 为既有 string 也有 int 的类型, 当按照两个表的 user_id 进行 join 操作的时候,默认的 hash 操作会按照 int 类型的 id 进 行分配,这样就会导致所有的 string 类型的 id 就被分到同一个 reducer 当中

**解决方案 ** 转换为相同数据类型

select * from user a left outer join log b on b.user_id = cast(a.user_id as string)

3.大小表关联查询产生数据倾斜

map join 概念:将其中做连接的小表(全量数据)分发到所有 MapTask 端进行 Join,从 而避免了 reduceTask,前提要求是内存足以装下该全量数据
在内存允许的条件下使用 map join 比直接使用 MapReduce 效率还高些, 当然这只限于做 join 查询的时候。

在 hive 中,直接提供了能够在 HQL 语句指定该次查询使用 map join,map join 的用法是 在查询/子查询的SELECT关键字后面添加/*+ MAPJOIN(tablelist) */提示优化器转化为map join

select /* +mapjoin(a) */ a.id aid, name, age from a join b on a.id = b.id;

在 hive0.11 版本以后会自动开启 map join 优化,由两个参数控制:

set hive.auto.convert.join=true; //设置 MapJoin 优化自动开启

set hive.mapjoin.smalltable.filesize=25000000 //设置小表不超过多大时开启 mapjoin 优化

4.小文件过多:

当出现小文件过多,需要合并小文件。可以通过set hive.merge.mapfiles=true来解决。

set hive.map.aggr=true; //map端部分聚合,相当于Combiner,可以减小压力(默认开启)

开启数据倾斜时负载均衡
set hive.groupby.skewindata=true(默认关闭);//有数据倾斜的时候进行负载均衡,当选项设定为 true,生成的查询计划会有两个 MR Job。第一个 MR Job 中,Map 的输出结果集合会随机分布到 Reduce 中,每个 Reduce 做部分聚合操作,并输出结果,这样处理的结果是相同的 Group By Key 有可能被分发到不同的 Reduce 中,从而达到负载均衡的目的;第二个 MR Job 再根据预处理的数据结果按照 Group By Key 分布到 Reduce 中(这个过程可以保证相同的 Group By Key 被分布到同一个 Reduce 中),最后完成最终的聚合操作。

5.当HiveQL中包含count(distinct)时

采用 sum() group by 的方式来替换 count(distinct)完成计算。

相关标签: Big Data