欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

ML 吴恩达 ex5:正则化、偏差、方差、样本容量之间关系总结

程序员文章站 2022-07-14 21:13:17
...

目录

一、高偏差(欠拟合)(high bias)

1.1、表现

1.2 、解决方法 — Feature Mapping for Polynomial Regression

二、高方差(过拟合)(variance)

2.1、表现

2.2、解决方法 — 正则化



一、高偏差(欠拟合)(high bias)

1.1、表现

% 1.1、无正则化的线性回归的模型
lambda = 0;  
[theta] = trainLinearReg([ones(m, 1) X], y, lambda);
% 1.2、无正则化的线性回归的学习情况
[error_train, error_val] = ...
    learningCurve([ones(m, 1) X], y, ...
                  [ones(size(Xval, 1), 1) Xval], yval, ...
                  lambda);
  • 左图可以看出回归效果不好,偏差大,模型过于简单,不能反映实际情况,由右图看出,此时增加样本容量,交叉训练误差和训练误差慢慢接近,两者都挺大的。故高偏差的情况下增加样本容量并不能降低偏差,提高效率。

ML 吴恩达 ex5:正则化、偏差、方差、样本容量之间关系总结

1.2 、解决方法 — Feature Mapping for Polynomial Regression

  • 通过对Feature处理,增加非线性项,使得模型可以更加精确(复杂)
  • 对数据分为训练集、测试集、交叉验证集
lambda = 0;
[theta] = trainLinearReg(X_poly, y, lambda);
[error_train,error_test ,error_val] = ...
 learningCurve2(X_poly, y, X_poly_val, yval,X_poly_test, ytest,lambda);
% Plot training data and fit
figure,subplot(1,2,1)
plot(X, y, 'rx', 'MarkerSize', 10, 'LineWidth', 1.5);
plotFit(min(X), max(X), mu, sigma, theta, p);
xlabel('Change in water level (x)');
ylabel('Water flowing out of the dam (y)');
title (sprintf('Polynomial Regression Fit (lambda = %f)', lambda));
legend('Orgin data','polynomial regression fit p=8')

subplot(1,2,2)
plot(1:m, error_train,'rx', 1:m, error_val,'g--',1:m, error_test,'MarkerSize', 10, 'LineWidth', 1.5);
title(sprintf('Polynomial Regression Learning Curve (lambda = %f)', lambda));
xlabel('Number of training examples')
ylabel('Error')
axis([0 13 0 100])
legend('Train', 'Cross Validation','Test')
  • 由左图可以看到现在模型可以很好的拟合所有的原始数据(训练误差一直为0),但是交叉误差和测试误差都挺大的,这说明模型的泛化能力不好,出现了另外一个问题:高方差。高方差的问题,可以随着样本数量增加,得到改善(交叉集和测试集的误差都有减少。)

ML 吴恩达 ex5:正则化、偏差、方差、样本容量之间关系总结

二、高方差(过拟合)(variance)

2.1、表现

  • 模型在训练集上表现很好,但是在测试集、交叉验证集上面表现不好,泛化能力差,模型相对而言不稳定,复杂,方差高
  • 其学习曲线如上图。

2.2、解决方法 — 正则化

  • 增加样本数量

           如上图所示,当样本容量增加时,测试误差、交叉验证误差都会下降,模型性能相对会提高。

  • 使用正则化方法
  1. 计算不同lambda下的训练集、交叉验证机、测试集的误差
    function [lambda_vec, error_train, error_val,error_test] = ...
        validationCurve2(X, y, Xval, yval,Xtest, ytest)
    
    % Selected values of lambda (you should not change this)
    lambda_vec = [0 0.001 0.003 0.01 0.03 0.1 0.3 1 3 10]';
    
    
    error_train = zeros(length(lambda_vec), 1);
    error_val = zeros(length(lambda_vec), 1);
    error_test = zeros(length(lambda_vec), 1);
    
    for i=1:size(lambda_vec, 1)
        theta = trainLinearReg(X, y, lambda_vec(i));
        error_train(i) = linearRegCostFunction(X, y, theta, 0);
        error_val(i) = linearRegCostFunction(Xval, yval, theta, 0);
        error_test(i) = linearRegCostFunction(Xtest, ytest, theta, 0);
    end
    
    
    % =========================================================================
    
    end
    

     

  2. 画图
    [lambda_vec, error_train, error_val,error_test] = ...
        validationCurve2(X_poly, y, X_poly_val, yval,X_poly_test, ytest);
    
    close all;
    plot(lambda_vec, error_train, lambda_vec, error_val, lambda_vec, error_test);
    legend('Train', 'Cross Validation','Test');
    xlabel('lambda');
    ylabel('Error');

     

  3. 结果
  • 通过画学习曲线,找到最佳的正则化参数lambda.

ML 吴恩达 ex5:正则化、偏差、方差、样本容量之间关系总结

三、交叉验证集和测试集

  1. 通过训练集和交叉验证集,确定参数lambda
  2. 由上步确定的lambda,看测试集的模型效果。