欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

kmeans实现文本聚类

程序员文章站 2022-07-14 20:59:53
...

需求

拿到的需求是输入n个文本,对文本进行聚类,由于这些输入不能通过历史数据进行训练,所以这个主要就是用无监督学习来解决。

kmeans

谈到聚类就会想到kmeans,它的核心思想是给定的K值和K个初始质心将样本中每个点都分到距离最近的类簇中,当所有点分配完后根据每个类簇的所有点重新计算质心,一般是通过平均值计算,然后再将每个点分到距离最近的新类簇中,不断循环此操作,直到质心不再变化或达到一定的迭代次数。

分词

会使用一些工具进行分词,比如IKAnalyzer,同时也支持将停词去掉。

词库

刚开始分类效果不是很好,于是改进词库。对于特定行业的分词,为提高分词的准确性及专业性,可以收集更准确的词库用于分词。可以由搜狗http://pinyin.sogou.com/dict/搜索各种类别的词汇,自己下载下来再整理,它的格式为scel,可以使用深蓝词汇转换工具转成txt方便使用。

kmeans实现文本聚类

特征集

特征集的确定是文本向量化的第一步,只有特征集确定好了才能进一步确定向量的值,那么怎么确定特征集呢?一般的做法可以是将所有样本的词都提取出来作为特征集。比如我们有两个文本 “小学生上学”和“股票大跌”,那特征集就是{“小学生”,”上学”,”股票”,”大跌”}。

特征权重

向量化第二部就是确定特征集的权重,特征集可以看成是向量的维数,而对于每个样本来说就需要确定每个维度的值了,这个值就可以看成是特征的权重,常常用TF-IDF作为值。TF-IDF又是什么?简单来说TF就是某文档中某个term出现的次数,而IDF即逆文档频率,可由下面公式计算:

IDF=log(Tt)

其中,T为统计样本中总文档数,t为包含某term的文档数。
TF和IDF的相乘则为特征权重。

特征降维

其实就是通过某种方法选择出比较相关的一些特征,将一些无关的特征去掉,达到特征降维效果。比如可以通过卡方检验,这里选择了用其他方式,提取热词。即认为每个文档的热词能代表该文档,由热词组成特征。

主要代码

public int[] learn(List<String> textList) {
    List<String> vectorList = VectorUtil.getVectorDimension(textList);
    double[][] datas = VectorUtil.getVector(textList.size(), vectorList, idf);
    KMeans kmeans = new KMeans(datas, K, ITERATE);
    return kmeans.getClusterLabel();
}

Github

https://github.com/sea-boat/TextAnalyzer

========广告时间========

公众号的菜单已分为“分布式”、“机器学习”、“深度学习”、“NLP”、“Java深度”、“Java并发核心”、“JDK源码”、“Tomcat内核”等,可能有一款适合你的胃口。

鄙人的新书《Tomcat内核设计剖析》已经在京东销售了,有需要的朋友可以购买。感谢各位朋友。

为什么写《Tomcat内核设计剖析》

=========================