欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

求编辑距离

程序员文章站 2022-07-14 19:29:07
...

定义

编辑距离又称Leveinshtein距离,是由俄罗斯科学家Vladimir Levenshtein在1965年提出。编辑距离是计算两个文本相似度的算法之一,以字符串为例,字符串a和字符串b的编辑距离是将a转换成b的最小操作次数,这里的操作包括三种:

  • 插入一个字符
  • 删除一个字符
  • 替换一个字符

举个例子,kitten和sitting的编辑距离是3,kitten -> sitten(k替换为s) -> sittin(e替换为i) -> sitting(插入g),至少要做3次操作。

实现

leva,b(i,j)来表示a和b的Leveinshtein距离(i和j分别代表a和b的长度),则:

  1. min(i,j)=0leva,b(i,j)=max(i,j)0
  2. ai=bjleva,b(i,j)=leva,b(i1,j1)xxczxyz=xxcxy
  3. leva,b(i,j)
    • leva,b(i1,j)+1(ai)xxcxyz=xxxyz+1
    • leva,b(i,j1)+1(bj)xxcxyz=xxczxyz+1=xxcxy+1
    • leva,b(i1,j1)+1(bj)xxcxyz=xxzxyz+1=xxxy+1

用公式表示如下:

leva,b(i,j)=if min(i,j)=0 max(i,j)if ai=bjleva,b(i1,j1)otherwiseminleva,b(i1,j)+1leva,b(i,j1)+1leva,b(i1,j1)+1

递归实现

用上面的公式可以很容易的写出递归实现:

public static int levenshteinDistance(String left, String right) {
    return levenshteinDistance(left.toCharArray(), left.length(), right.toCharArray(), right.length());
}
private static int levenshteinDistance(char[] left, int leftLen, char[] right, int rightLen) {
    if (Math.min(leftLen, rightLen) == 0) {
        return Math.max(leftLen, rightLen);
    }
    if (left[leftLen - 1] == right[rightLen - 1]) {
        return levenshteinDistance(left, leftLen - 1, right, rightLen - 1);
    }
    return Math.min(levenshteinDistance(left, leftLen - 1, right, rightLen),
            Math.min(levenshteinDistance(left, leftLen, right, rightLen - 1),
                    levenshteinDistance(left, leftLen - 1, right, rightLen - 1))) + 1;
}

递归的实现比较简单,递归的思想是通过递归的形式,最终得到一个由不可继续分割(递归出口)的式子组成的表达式,最终会存在非常多的重复的不可继续分割的式子,造成大量的重复计算,所以很低效。

动态规划实现

递归是从后向前分解,那与之相对的就是从前向后计算,逐渐推导出最终结果,此法被称之为动态规划,动态规划很适用于具有重叠计算性质的问题,但这个过程中会存储大量的中间计算的结果,一个好的动态规划算法会尽量减少空间复杂度。

全矩阵

以xxc和xyz为例,建立一个矩阵,通过矩阵记录计算好的距离:
求编辑距离
min(i,j)=0leva,b(i,j)=max(i,j),根据此初始化矩阵的第一行和第一列:
求编辑距离
依据上面的公式可以继续推导出第二行:
求编辑距离
继续迭代,直至推导出最终结果:
求编辑距离
这个过程记录了所有中间结果,空间复杂度为O(n2),来看一下代码实现:

public static int levenshteinDistance(String left, String right) {
    // 创建矩阵
    int[][] d = new int[left.length() + 1][right.length() + 1];
    // 初始化第一列
    for (int i = 0; i <= left.length(); i++) {
        d[i][0] = i;
    }
    // 初始化第一行
    for (int j = 1; j <= right.length(); j++) {
        d[0][j] = j;
    }
    // 从第二行第二列开始迭代
    for (int i = 1; i <= left.length(); i++) {
        for (int j = 1; j <= right.length(); j++) {
            // 套公式计算
            if (left.charAt(i - 1) == right.charAt(j - 1)) {
                d[i][j] = d[i - 1][j - 1];
            } else {
                d[i][j] = Math.min(d[i - 1][j], Math.min(d[i][j - 1], d[i - 1][j - 1])) + 1;
            }
        }
    }
    // 最后一个格子即为最终结果
    return d[left.length()][right.length()];
}

两行

空间复杂度可以继续优化,我们计算当前行时,只依赖上一行的数据,所以我们只需要O(2n)的空间复杂度,代码实现:

public static int levenshteinDistance3(String left, String right) {
    int[] pre = new int[right.length() + 1];// 上一行
    int[] current = new int[right.length() + 1];// 当前行
    // 初始化第一行
    for (int i = 0; i < pre.length; i++) {
        pre[i] = i;
    }
    for (int i = 1; i <= left.length(); i++) {
        current[0] = i;// 第一列
        for (int j = 1; j <= right.length(); j++) {
            // 套公式计算
            if (left.charAt(i - 1) == right.charAt(j - 1)) {
                current[j] = pre[j - 1];
            } else {
                current[j] = Math.min(current[j - 1], Math.min(pre[j], pre[j - 1])) + 1;
            }
        }
        // current -> pre
        System.arraycopy(current, 0, pre, 0, current.length);
    }
    return pre[pre.length - 1];
}

单行

我们还可以进一步优化,其实只需要一行就可以了,计算当前格子时,只需要左、上、左上的值,左面的值可以直接得到,上面的值是当前格子修改前的旧值,也可以直接得到,左上角的值是左面格子修改前的旧值,需要暂存,这时空间复杂度为O(n)
求编辑距离
代码实现:

public static int levenshteinDistance(String left, String right) {
    // 初始化当前行
    int[] d = new int[right.length() + 1];
    for (int i = 0; i < d.length; i++) {
        d[i] = i;
    }
    int leftTop, nextLeftTop;
    for (int i = 1; i <= left.length(); i++) {     
        leftTop = i - 1;// 当前行的左上角初始值
        d[0] = i;// 第一列
        for (int j = 1; j <= right.length(); j++) {
            nextLeftTop = d[j];// 暂存,此时d[j]为上一行的值,也是d[j+1]左上角的值
            // 套公式计算
            if (left.charAt(i - 1) == right.charAt(j - 1)) {
                d[j] = leftTop;
            } else {
                d[j] = Math.min(d[j - 1], Math.min(d[j], leftTop)) + 1;
            }
            leftTop = nextLeftTop;
        }
    }
    return d[d.length - 1];
}

应用

编辑距离是基于文本自身去计算,没有办法深入到语义层面,可以胜任一些简单的分析场景,如拼写检查、抄袭侦测等,在我的工作中,该算法在数据聚合时有一定的运用。

参考

https://en.wikipedia.org/wiki/Levenshtein_distance
http://www.dreamxu.com/books/dsa/dp/edit-distance.html


版权声明
本博客所有的原创文章,作者皆保留版权。转载必须包含本声明,保持本文完整,并以超链接形式注明作者高爽和本文原始地址:http://blog.csdn.net/ghsau/article/details/78903076

相关标签: 编辑距离