哈弗曼树
https://www.jb51.net/article/90728.htm
https://blog.csdn.net/bruce_6/article/details/38656413
http://www.cnblogs.com/ssyfj/p/9472733.html
定义:
节点之间的路径长度:在树中从一个结点到另一个结点所经历的分支,构成了这两个结点间的路径上的经过的分支数称为它的路径长度
树的路径长度:从树的根节点到树中每一结点的路径长度之和。在结点数目相同的二叉树中,完全二叉树的路径长度最短。
结点的权:在一些应用中,赋予树中结点的一个有某种意义的实数。
结点的带权路径长度:结点到树根之间的路径长度与该结点上权的乘积。
树的带权路径长度(Weighted Path Length of Tree:WPL):定义为树中所有叶子结点的带权路径长度之和
最优二叉树:从已给出的目标带权结点(单独的结点) 经过一种方式的组合形成一棵树.使树的权值最小.。最优二叉树是带权路径长度最短的二叉树。根据结点的个数,权值的不同,最优二叉树的形状也各不相同。
它们的共同点是:带权值的结点都是叶子结点。权值越小的结点,其到根结点的路径越长。
如,给定4个叶子结点a,b,c和d,分别带权7,5,2和4。构造如下图所示的三棵二叉树(还有许多棵),它们的带权路径长度分别为:
(a)WPL=7*2+5*2+2*2+4*2=36
(b)WPL=7*3+5*3+2*1+4*2=46
(c)WPL=7*1+5*2+2*3+4*3=35
其中(c)树的WPL最小,可以验证,它就是哈夫曼树。
注意:
① 叶子上的权值均相同时,完全二叉树一定是最优二叉树,否则完全二叉树不一定是最优二叉树。
② 最优二叉树中,权越大的叶子离根越近。
③ 最优二叉树的形态不唯一,WPL最小。
哈夫曼树特点:
1.没有度为1的结点
2.n个叶子节点的哈夫曼树共有2n-1个结点
树的特点:度为2结点和叶结点的关系n2=n0-1
所以:当叶结点为n时,度为二的结点数为n-1
因为哈夫曼没有度为一的结点,所以一共在树中有2n-1个结点
3.哈夫曼树任意非叶结点的左右子树交换后还是哈夫曼树
4.对同一组权值{w1,w2,…,wn},是会存在不同结构的哈夫曼树
构造哈夫曼树
1) 根据给定的n个权值{w1, w2, w3, w4……wn}构成n棵二叉树的森林 F={T1 , T2 ,
T3…..Tn},其中每棵二叉树只有一个权值为wi 的根节点,其左右子树都为空;2) 在森林F中选择两棵根节点的权值最小的二叉树,作为一棵新的二叉树的左右子树,且令新的二叉树的根节点的权值为其左右子树的权值和;
3)从F中删除被选中的那两棵子树,并且把构成的新的二叉树加到F森林中;
4)重复2 ,3 操作,直到森林只含有一棵二叉树为止,此时得到的这棵二叉树就是哈夫曼树。
构造过程如下图:
例子2:
有一个字符串:aaaaaaaaaabbbbbaaaaaccccccccddddddfff
第一步,我们先统计各个字符出现的次数,称之为该字符的权值。a 15 ,b 5, c 8, d 6, f 3。
第二步,找去这里面权值最小的两个字符,b5和f3,构建节点。
然后将f3和b5去掉,现在是a15,c8,d6,fb8。
第三步,重复第二步,直到构建出只剩一个节点。
现在是dfb14,a15,c8。
最后,
构建的步骤
1.统计字符串中字符以及字符的出现次数; 2.根据第一步的结构,创建节点; 3.对节点权值升序排序; 4.取出权值最小的两个节点,生成一个新的父节点; 5.删除权值最小的两个节点,将父节点存放到列表中; 6.重复第四五步,直到剩下一个节点; 7.将最后的一个节点赋给根节点。
代码实现
首先需要有个节点类来存放数据。
package huffman;
/**
* 节点类
* @author yuxiu
*
*/
public class Node {
public String code;// 节点的哈夫曼编码
public int codeSize;// 节点哈夫曼编码的长度
public String data;// 节点的数据
public int count;// 节点的权值
public Node lChild;
public Node rChild;
public Node() {
}
public Node(String data, int count) {
this.data = data;
this.count = count;
}
public Node(int count, Node lChild, Node rChild) {
this.count = count;
this.lChild = lChild;
this.rChild = rChild;
}
public Node(String data, int count, Node lChild, Node rChild) {
this.data = data;
this.count = count;
this.lChild = lChild;
this.rChild = rChild;
}
}
构造过程
package huffman;
import java.io.*;
import java.util.*;
public class Huffman {
private String str;// 最初用于压缩的字符串
private String newStr = "";// 哈夫曼编码连接成的字符串
private Node root;// 哈夫曼二叉树的根节点
private boolean flag;// 最新的字符是否已经存在的标签
private ArrayList<String> charList;// 存储不同字符的队列 相同字符存在同一位置
private ArrayList<Node> NodeList;// 存储节点的队列
15 16 /**
* 构建哈夫曼树
*
* @param str
*/
public void creatHfmTree(String str) {
this.str = str;
charList = new ArrayList<String>();
NodeList = new ArrayList<Node>();
// 1.统计字符串中字符以及字符的出现次数
// 基本思想是将一段无序的字符串如ababccdebed放到charList里,分别为aa,bbb,cc,dd,ee
// 并且列表中字符串的长度就是对应的权值
for (int i = 0; i < str.length(); i++) {
char ch = str.charAt(i); // 从给定的字符串中取出字符
flag = true;
for (int j = 0; j < charList.size(); j++) {
if (charList.get(j).charAt(0) == ch) {// 如果找到了同一字符
String s = charList.get(j) + ch;
charList.set(j, s);
flag = false;
break;
}
}
if (flag) {
charList.add(charList.size(), ch + "");
}
}
// 2.根据第一步的结构,创建节点
for (int i = 0; i < charList.size(); i++) {
String data = charList.get(i).charAt(0) + ""; // 获取charList中每段字符串的首个字符
int count = charList.get(i).length(); // 列表中字符串的长度就是对应的权值
Node node = new Node(data, count); // 创建节点对象
NodeList.add(i, node); // 加入到节点队列
}
// 3.对节点权值升序排序
Sort(NodeList);
while (NodeList.size() > 1) {// 当节点数目大于一时
// 4.取出权值最小的两个节点,生成一个新的父节点
// 5.删除权值最小的两个节点,将父节点存放到列表中
Node left = NodeList.remove(0);
Node right = NodeList.remove(0);
int parentWeight = left.count + right.count;// 父节点权值等于子节点权值之和
Node parent = new Node(parentWeight, left, right);
NodeList.add(0, parent); // 将父节点置于首位
}
// 6.重复第四五步,就是那个while循环
// 7.将最后的一个节点赋给根节点
root = NodeList.get(0);
}
/**
* 升序排序
*
* @param nodelist
*/
public void Sort(ArrayList<Node> nodelist) {
for (int i = 0; i < nodelist.size() - 1; i++) {
for (int j = i + 1; j < nodelist.size(); j++) {
Node temp;
if (nodelist.get(i).count > nodelist.get(j).count) {
temp = nodelist.get(i);
nodelist.set(i, nodelist.get(j));
nodelist.set(j, temp);
}
}
}
}
/**
* 遍历
*
* @param node
* 节点
*/
public void output(Node node) {
if (node.lChild != null) {
output(node.lChild);
}
System.out.print(node.count + " "); // 中序遍历
if (node.rChild != null) {
output(node.rChild);
}
}
public void output() {
output(root);
}
/**
* 主方法
*
* @param args
*/
public static void main(String[] args) {
Huffman huff = new Huffman();//创建哈弗曼对象
huff.creatHfmTree("sdfassvvdfgsfdfsdfs");//构造树
}
上一篇: Python基础学习——Day4
下一篇: 【哈夫曼树】哈夫曼树的实现以及哈弗曼编码