前言
在Android开发中,使用Handler的地方很多,大致通常写法如下:
private Handler handler = new Handler() {
public void handleMessage(android.os.Message msg) {
if (msg.what == 1) {
mAdapter.notifyDataSetChanged();
}
}
};
这段代码看似没什么问题,但是里面却有一个警告,警告信息如下:
This Handler class should be static or leaks might occur
大致意思:建议使用静态声明否者可能出现内存泄露
Handler会内存泄露?下面来说明:
当使用内部类(包括匿名类)来创建Handler的时候,Handler对象会隐式地持有一个外部类对象(通常是一个Activity)的引用(不然你怎么可能通过Handler来操作Activity中的View?)。而Handler通常会伴随着一个耗时的后台线程(例如从网络拉取图片)一起出现,这个后台线程在任务执行完毕(例如图片下载完毕)之后,通过消息机制通知Handler,然后Handler把图片更新到界面。然而,如果用户在网络请求过程中关闭了Activity,正常情况下,Activity不再被使用,它就有可能在GC检查时被回收掉,但由于这时线程尚未执行完,而该线程持有Handler的引用(不然它怎么发消息给Handler?),这个Handler又持有Activity的引用,就导致该Activity无法被回收(即内存泄露),直到网络请求结束(例如图片下载完毕)。另外,如果你执行了Handler的postDelayed()方法,该方法会将你的Handler装入一个Message,并把这条Message推到MessageQueue中,那么在你设定的delay到达之前,会有一条MessageQueue
-> Message -> Handler -> Activity的链,导致你的Activity被持有引用而无法被回收。
内存泄漏简介
Java使用有向图机制,通过GC自动检查内存中的对象(什么时候检查由虚拟机决定),如果GC发现一个或一组对象为不可到达状态,则将该对象从内存中回收。也就是说,一个对象不被任何引用所指向,则该对象会在被GC发现的时候被回收;另外,如果一组对象中只包含互相的引用,而没有来自它们外部的引用(例如有两个对象A和B互相持有引用,但没有任何外部对象持有指向A或B的引用),这仍然属于不可到达,同样会被GC回收。
内存泄露的危害
内存泄露的危害就是会使虚拟机占用内存过高,导致OOM(内存溢出),程序出错。
对于Android应用来说,就是你的用户打开一个Activity,使用完之后关闭它,内存泄露;又打开,又关闭,又泄露;几次之后,程序占用内存超过系统限制,FC。
解决方案
通过程序逻辑来进行保护
1,在关闭Activity的时候停掉你的后台线程。线程停掉了,就相当于切断了Handler和外部连接的线,Activity自然会在合适的时候被回收。
2,如果你的Handler是被delay的Message持有了引用,那么使用相应的Handler的removeCallbacks()方法,把消息对象从消息队列移除就行了。
将Handler声明为静态类
静态类不持有外部类的对象,所以你的Activity可以随意被回收。由于Handler不再持有外部类对象的引用,导致程序不允许你在Handler中操作Activity中的对象了。所以你需要在Handler中增加一个对Activity的弱引用(WeakReference 文章尾部会有说明)。
PS:在Java 中,非静态的内部类和匿名内部类都会隐式地持有其外部类的引用,静态的内部类不会持有外部类的引用。
static class MyHandler extends Handler {
WeakReference<Activity> mWeakReference;
public MyHandler(Activity activity) {
mWeakReference = new WeakReference<Activity>(activity);
}
@Override
public void handleMessage(Message msg) {
final Activity activity = mWeakReference.get();
if (activity != null) {
if (msg.what == 1) {
mAdapter.notifyDataSetChanged();
}
}
}
}
什么是WeakReference?
WeakReference弱引用,与强引用(即我们常说的引用)相对,它的特点是,GC在回收时会忽略掉弱引用,即就算有弱引用指向某对象,但只要该对象没有被强引用指向(实际上多数时候还要求没有软引用,但此处软引用的概念可以忽略),该对象就会在被GC检查到时回收掉。对于上面的代码,用户在关闭Activity之后,就算后台线程还没结束,但由于仅有一条来自Handler的弱引用指向Activity,所以GC仍然会在检查的时候把Activity回收掉。这样,内存泄露的问题就不会出现了。
在此推荐一个写好的Handler WeakReference,可直接使用。
WeakHandler.java
import java.lang.ref.WeakReference;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
import android.os.Handler;
import android.os.Looper;
import android.os.Message;
import android.support.annotation.NonNull;
import android.support.annotation.Nullable;
import android.support.annotation.VisibleForTesting;
public class WeakHandler {
private final Handler.Callback mCallback; // hard reference to Callback. We need to keep callback in memory
private final ExecHandler mExec;
private Lock mLock = new ReentrantLock();
@VisibleForTesting
final ChainedRef mRunnables = new ChainedRef(mLock, null);
public WeakHandler() {
mCallback = null;
mExec = new ExecHandler();
}
public WeakHandler(@Nullable Handler.Callback callback) {
mCallback = callback; // Hard referencing body
mExec = new ExecHandler(new WeakReference<>(callback)); // Weak referencing inside ExecHandler
}
public WeakHandler(@NonNull Looper looper) {
mCallback = null;
mExec = new ExecHandler(looper);
}
public WeakHandler(@NonNull Looper looper, @NonNull Handler.Callback callback) {
mCallback = callback;
mExec = new ExecHandler(looper, new WeakReference<>(callback));
}
public final boolean post(@NonNull Runnable r) {
return mExec.post(wrapRunnable(r));
}
public final boolean postAtTime(@NonNull Runnable r, long uptimeMillis) {
return mExec.postAtTime(wrapRunnable(r), uptimeMillis);
}
public final boolean postAtTime(Runnable r, Object token, long uptimeMillis) {
return mExec.postAtTime(wrapRunnable(r), token, uptimeMillis);
}
public final boolean postDelayed(Runnable r, long delayMillis) {
return mExec.postDelayed(wrapRunnable(r), delayMillis);
}
public final boolean postAtFrontOfQueue(Runnable r) {
return mExec.postAtFrontOfQueue(wrapRunnable(r));
}
public final void removeCallbacks(Runnable r) {
final WeakRunnable runnable = mRunnables.remove(r);
if (runnable != null) {
mExec.removeCallbacks(runnable);
}
}
public final void removeCallbacks(Runnable r, Object token) {
final WeakRunnable runnable = mRunnables.remove(r);
if (runnable != null) {
mExec.removeCallbacks(runnable, token);
}
}
public final boolean sendMessage(Message msg) {
return mExec.sendMessage(msg);
}
public final boolean sendEmptyMessage(int what) {
return mExec.sendEmptyMessage(what);
}
public final boolean sendEmptyMessageDelayed(int what, long delayMillis) {
return mExec.sendEmptyMessageDelayed(what, delayMillis);
}
public final boolean sendEmptyMessageAtTime(int what, long uptimeMillis) {
return mExec.sendEmptyMessageAtTime(what, uptimeMillis);
}
public final boolean sendMessageDelayed(Message msg, long delayMillis) {
return mExec.sendMessageDelayed(msg, delayMillis);
}
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
return mExec.sendMessageAtTime(msg, uptimeMillis);
}
public final boolean sendMessageAtFrontOfQueue(Message msg) {
return mExec.sendMessageAtFrontOfQueue(msg);
}
public final void removeMessages(int what) {
mExec.removeMessages(what);
}
public final void removeMessages(int what, Object object) {
mExec.removeMessages(what, object);
}
public final void removeCallbacksAndMessages(Object token) {
mExec.removeCallbacksAndMessages(token);
}
public final boolean hasMessages(int what) {
return mExec.hasMessages(what);
}
public final boolean hasMessages(int what, Object object) {
return mExec.hasMessages(what, object);
}
public final Looper getLooper() {
return mExec.getLooper();
}
private WeakRunnable wrapRunnable(@NonNull Runnable r) {
//noinspection ConstantConditions
if (r == null) {
throw new NullPointerException("Runnable can't be null");
}
final ChainedRef hardRef = new ChainedRef(mLock, r);
mRunnables.insertAfter(hardRef);
return hardRef.wrapper;
}
private static class ExecHandler extends Handler {
private final WeakReference<Callback> mCallback;
ExecHandler() {
mCallback = null;
}
ExecHandler(WeakReference<Callback> callback) {
mCallback = callback;
}
ExecHandler(Looper looper) {
super(looper);
mCallback = null;
}
ExecHandler(Looper looper, WeakReference<Callback> callback) {
super(looper);
mCallback = callback;
}
@Override
public void handleMessage(@NonNull Message msg) {
if (mCallback == null) {
return;
}
final Callback callback = mCallback.get();
if (callback == null) { // Already disposed
return;
}
callback.handleMessage(msg);
}
}
static class WeakRunnable implements Runnable {
private final WeakReference<Runnable> mDelegate;
private final WeakReference<ChainedRef> mReference;
WeakRunnable(WeakReference<Runnable> delegate, WeakReference<ChainedRef> reference) {
mDelegate = delegate;
mReference = reference;
}
@Override
public void run() {
final Runnable delegate = mDelegate.get();
final ChainedRef reference = mReference.get();
if (reference != null) {
reference.remove();
}
if (delegate != null) {
delegate.run();
}
}
}
static class ChainedRef {
@Nullable
ChainedRef next;
@Nullable
ChainedRef prev;
@NonNull
final Runnable runnable;
@NonNull
final WeakRunnable wrapper;
@NonNull
Lock lock;
public ChainedRef(@NonNull Lock lock, @NonNull Runnable r) {
this.runnable = r;
this.lock = lock;
this.wrapper = new WeakRunnable(new WeakReference<>(r), new WeakReference<>(this));
}
public WeakRunnable remove() {
lock.lock();
try {
if (prev != null) {
prev.next = next;
}
if (next != null) {
next.prev = prev;
}
prev = null;
next = null;
} finally {
lock.unlock();
}
return wrapper;
}
public void insertAfter(@NonNull ChainedRef candidate) {
lock.lock();
try {
if (this.next != null) {
this.next.prev = candidate;
}
candidate.next = this.next;
this.next = candidate;
candidate.prev = this;
} finally {
lock.unlock();
}
}
@Nullable
public WeakRunnable remove(Runnable obj) {
lock.lock();
try {
ChainedRef curr = this.next; // Skipping head
while (curr != null) {
if (curr.runnable == obj) { // We do comparison exactly how Handler does inside
return curr.remove();
}
curr = curr.next;
}
} finally {
lock.unlock();
}
return null;
}
}
}
by anonymous