欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Android中的消息系统————Handler,MessageQueue与Looper

程序员文章站 2022-07-14 17:04:36
...

我们都知道,Android系统强制要求我们将更新ui等操作放在主线程中进行,而网络请求,读取文件等耗时操作则通常会放到子线程中运行,因此,在Android开发中经常需要在不同的线程之间进行切换。而Android系统为我们提供了消息系统来进行异步消息的处理,因此我们有必要了解一下Android消息系统的工作原理。

Handler,MessageQueue与Looper之间的关系

我们先来看一下Handler,MessageQueue与Looper三者之间的关系。首先,Handler对象负责发出一个消息,这个消息最终会被提交到一个MessageQueue之中,这个MessageQueue则是一个专门用来存储Message的队列集合。而Looper对象内部有一个无限循环,它会不断的从这个MessageQueue中取出消息,并将其交给发出该消息的Handler进行处理。

需要注意的是,我们可以在一个线程中创建很多个Handler对象,但是每个线程只会对应一个Looper和MessageQueue对象。Handler对象在初始化的时候会和该线程所对应的Looper及MessageQueue对象进行绑定。因此,Handler在哪个线程中创建,它发出的消息最终就会在哪个线程中执行。接下来我们通过源码来详细的看一下它们的工作原理。

消息系统的创建

先从消息系统的创建说起。Android中主线程的消息系统会在主线程启动时默认被创建,而子线程的消息系统默认则不会被创建,我们需要在子线程中手动调用Looper.prepare()和Looper.loop()这两个静态方法才可以开启子线程的消息系统。接下来我们以主线程为例看一下消息系统的创建过程。

Android主线程的消息系统是在ActivityThread类的main方法中被创建的,我们看一下main方法的代码:

    public static void main(String[] args) {
        ...
        Looper.prepareMainLooper(); //先调用prepareMainLooper方法

        ActivityThread thread = new ActivityThread();
        thread.attach(false);

        if (sMainThreadHandler == null) {
            sMainThreadHandler = thread.getHandler();
        }

        if (false) {
            Looper.myLooper().setMessageLogging(new
                    LogPrinter(Log.DEBUG, "ActivityThread"));
        }

        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
        Looper.loop();  //然后调用loop方法

        throw new RuntimeException("Main thread loop unexpectedly exited");//因为Looper.loop()实际上是执行了一个无限循环,所以一般情况下不会走到这句,除非出现异常导致循环中断
    }

我们可以看到,与子线程不同的是,主线程的消息系统在启动时调用的是Looper.prepareMainLooper方法而非prepare方法。在调用完prepareMainLooper方法之后又调用了Looper.loop方法。我们看一下prepareMainLooper方法:

    public static void prepareMainLooper() {
        prepare(false);//调用prepare方法
        synchronized (Looper.class) {
            if (sMainLooper != null) {
                throw new IllegalStateException("The main Looper has already been prepared.");
            }
            sMainLooper = myLooper();//通过myLooper方法将创建好的looper对象赋值给sMainLooper全局对象
        }
    }

可以看到prepareMianLooper方法中其实也是调用的prepare方法,prepare方法的源码如下:

    private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }

在prepare方法中,系统直接通过new关键字创建了一个Looper对象,并将这个Looper对象放在了一个名为sThreadLocal的全局对象中。

这个sThreadLocal对象是一个定义在Looper中的类型为ThreadLocal<Looper>的全局对象,并且被static final所修饰。ThreadLocal是java所提供的一个类,我们可以通过ThreadLocal的set(T value)方法来给这个ThreadLocal对象设置一个变量,但值得注意的是,通过ThreadLocal来维护的变量是线程私有的,各个线程通过ThreadLocal.get()方法取得的对象都是独立的,他们之间的操作都互不影响的。主线程将一个Looper对象设置给了一个ThreadLocal,其他子线程是无法通过这个ThreadLocal对象来获取主线程的Looper对象的。因此,Android通过ThreadLocal来维护Looper对象,就做到了每个线程对应一个独立的Looper对象。

我们再来看一下Looper的构造方法:

    private Looper(boolean quitAllowed) {
        mQueue = new MessageQueue(quitAllowed);
        mThread = Thread.currentThread();
    }

可见Looper对象在初始化时直接创建了一个MessageQueue集合,并赋值给成员变量mQueue。因此MessageQueue对象被Looper对象所持有。

现在Looper和MessageQueue对象已经创建完成了。我们再回到prepareMainLooper方法中。在通过prepare方法创建完Looper对象和MessageQueue对象后,系统又调用了Looper的myLooper方法,而myLooper方法返回的其实是刚才创建的该线程所独有的Looper对象,这里即是主线程所对应的Looper对象。系统将这个对象赋值给了一个全局变量sMainLooper,方便之后使用getMainLooper方法来直接拿取主线程的Looper对象。myLooper方法的代码如下:

    public static @Nullable Looper myLooper() {
        return sThreadLocal.get();
    }

至此准备工作都已经完成了,系统只需要再通过Looper.loop方法让消息系统运行起来即可,loop方法的源码如下:

    public static void loop() {
        final Looper me = myLooper();   //获取looper对象
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;  //获取MessageQueue对象
        ...
        for (;;) {
            Message msg = queue.next(); // 从MessageQueue对象中获取一个消息
            if (msg == null) {
                return;
            }
           ...
            try {
                msg.target.dispatchMessage(msg);//将这个消息分发给相应的Handler进行处理
                end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
            } finally {
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }
            ...
            msg.recycleUnchecked();
        }
    }

loop方法的代码较多,为了便于理解,省去了部分代码。首先通过myLooper方法获取当前线程对应的Looper对象,然后又通过me.mQueue拿取了looper对象内部的MessageQueue。之后开启了一个无限循环,在循环中,首先通过queue.next()取出MessageQueue中存储的一个消息,如果这个消息不为null,则通过msg.target.dispatchMessage(msg)分发给相应的Handler进行处理。msg.target其实就是发出该消息的Handler对象。Handler在发出一个消息时会将自身存储在Message内部的target变量中,之后在分析Handler时会讲到。我们先来看一下dispatchMessage方法的源码:

    public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);    //通过handleCallback来执行Message对象内部的Runnable
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg); //将Message交给handleMessage方法进行处理
        }
    }

首先会检查msg的callback对象是否为null,这个callback是一个Runnable类型的对象,我们知道Handler可以发出两种类型的消息,一种是通过sendMessage等方法直接发送一个Message消息对象,另一种是通过则会通过post方法发送一个Runnable对象。如果发送的是一个Runnable对象,Handler在内部也会将这个Runnable对象封装成一个Message对象,并将原来的Runnable对象赋值给Message的callback变量。如果msg.callback不为null,说明该消息原本是通过Handler的post方法发出的一个Runnable,那么会通过handleCallback方法直接执行这个Runnable。如果msg.callback对象为null,那么就将这个msg交给Handler的handleMessage方法进行处理。我们在创建Handler对象时通常会重写handleMessage方法来实现我们想要的逻辑。

由于loop方法内部其实是一个无限循环,因此Looper对象会不断的从MessageQueue对象中拿取消息并分发给对应的Handler进行处理。需要注意的是,如果我们在子线程中调用了Looper.loop方法,那么Looper中的无限循环会导致子线程阻塞,因此当我们在子线程中使用了Looper后,应该在适当的时机调用looper对象的quit或quitSafely方法来退出这个Looper。

至此整个主线程的消息系统已经创建完成并且开始工作了,接下来我们看一下Handler是如何将一个消息提交给相应的MessageQueue的。

消息的发送过程

Handler对象负责消息的发送和处理。我们先来看一下Handler对象的构造方法:

    public Handler(Callback callback, boolean async) {
        ...
        mLooper = Looper.myLooper();//与Looper进行了绑定
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;//与MessageQueue绑定
        mCallback = callback;  
        mAsynchronous = async;
    }

Handler对象有许多重载的构造方法,但这些构造方法最终都是调用的Hanler(Callback callback, boolean async)这个构造方法。在这个构造方法中,首先通过Looper.myLooper获取到了一个Looper对象并赋值给了自己的一个成员变量,前面我们说过,myLooper对象返回的是当前线程所独有的Looper对象,这样一来Handler,Looper和线程之间就一一对应起来了。因此,无论handler在哪个线程发出消息,这个消息最终都会在handler初始化时所绑定的Looper所对应的线程中进行处理。

前面我们说过,Handler可以发出两种类型的消息,一种是通过sendMessage方法发送一个Message对象,另一种是通过post方法发送一个Runnable。我们先来看一下sendMessage方法和post方法的源码:

    public final boolean post(Runnable r)
    {
       return  sendMessageDelayed(getPostMessage(r), 0);
    }
    
    public final boolean sendMessage(Message msg)
    {
        return sendMessageDelayed(msg, 0);
    }

可以看到无论是post方法还是sendMessage方法最终都是调用的sendMessageDelayed方法,不同的是在post方法中先调用了getPostMessage方法来对Runnable对象进行了一些处理,我们来看一下getPostMessage方法:

    private static Message getPostMessage(Runnable r) {
        Message m = Message.obtain();
        m.callback = r;
        return m;
    }

正如我们前面所说的,Handler将通过post方法提交的Runnable封装在了一个Message对象内的callback变量里。接下来我们看一下sendMessageDelayed方法:

    public final boolean sendMessageDelayed(Message msg, long delayMillis){
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
    }
    
    public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }

可见在sendMessageDelayed方法中又调用了sendMessageAtTime方法。而在sendMessageAtTime方法中,先拿取了初始化时绑定的MessageQueue对象,然后将这个MessageQueue和Message对象一起传给了enqueueMessage方法:

    private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }

在enqueueMessage方法中,Handler将自身赋值给了Message的target变量,前面在讲loop方法的时候也说过,Message最终会通过这个target变量来获取对应的Handler,因此,Message最终会被发出该消息的Handler所处理。之后又调用了MessageQueue的enqueueMessage方法,最终将这个Message提交给了对应的MessageQueue对象。MessageQueue实际上是一个单链表型的数据结构,链表中的前一个元素都会持有下一个元素的引用,而MessageQueue只需要持有第一个元素的引用即可。看一下MessageQueue的enqueueMessage方法:

    boolean enqueueMessage(Message msg, long when) {
            ...
            msg.when = when;
            Message p = mMessages;//当前链表中的首个元素
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {//如果链表中没有元素或者要插入的message的执行时间早于队列中的首个元素
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; //
                prev.next = msg;
            }
            ...
        }
        return true;
    }

当插入一个新的Message时,MessageQueue首先会判断当前链表中是否存在元素,如果集合中的首个元素为null,那么就说明这个集合现在也是空的。如果集合中不存在元素,或新插入的Message不需要延时执行,或者要插入的Message的执行时间要早于集合中的首个元素的话,那么直接将链表中的首个元素设置为新插入的Message的下个元素,并将新插入的元素设置为队列中的首个元素。如果不满足上述条件的话,那么会从头开始遍历集合,根据Message的执行时间来将Message插入到集合中的相应位置。可见MessageQueue虽然名字中带有Queue,但并不是一个标准的队列,因为队列只允许在表的后端插入元素。

至此,一个Message就成功被Handler提交到了Message中了。

由于Android系统的消息机制比较复杂,本人技术水平非常有限,本文中难免会出现错误或者表达不准确的地方,希望大家能够帮忙指出,谢谢!