欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Android handler小结

程序员文章站 2022-07-14 17:04:54
...

1.几个概念

Handler,消息发送与处理者
Message,消息
MessageQueue,消息队列
Looper,管理消息队列

2.构造Handler

一般我们都是这样初始化handler的

Handler handler = new Handler() {
        @Override
        public void handleMessage(Message msg) {
            super.handleMessage(msg);
        }
    };

进入handler的源码可以看到其构造函数

public Handler(Callback callback, boolean async) {
        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }

这里主要是获取到looper和messageQueue以便绑定,mCallback是一个内部接口对象,继承了handleMessage方法,mAsynchronous与postSyncBarrier有关,这里不讨论
Looper.myLooper()用来获取到当前线程的looper对象

public static @Nullable Looper myLooper() {
        return sThreadLocal.get();
    }

sThreadLocal是一个ThreadLocal对象,ThreadLocal可以保存各个线程存储的变量

3.Looper的初始化

这里分两种情况讨论

3.1主线程初始化looper

我们在主线程创建handler的时候并没有初始化looper,是因为主线程已经帮我们做好了,在ActivityThread.java的main方法里面

public static void main(String[] args) {
        ...
        Looper.prepareMainLooper();
        if (sMainThreadHandler == null) {
            sMainThreadHandler = thread.getHandler();
        }
        Looper.loop();
    }
public static void prepareMainLooper() {
        prepare(false);
        synchronized (Looper.class) {
            if (sMainLooper != null) {
                throw new IllegalStateException("The main Looper has already been prepared.");
            }
            sMainLooper = myLooper();
        }
    }

prepare方法中的false用于区分主线程和其他线程的消息队列,只有主线程的消息才能更新UI

3.1其他线程初始化looper

在非主线程使用handler要手动初始化looper,即调用looper.prepare(),其中传递的参数为true

public static void prepare() {
        prepare(true);
    }

    private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }

4.sendMessage

4.1构造message

虽然我们会采用以下方式构造新的message,但是API还是建议使用obtain方法,这样可以达到复用的效果,避免内存占用

Message message = new Message();
Message message1 = Message.obtain();

public static Message obtain() {
        synchronized (sPoolSync) {
            if (sPool != null) {
                Message m = sPool;
                sPool = m.next;
                m.next = null;
                m.flags = 0; // clear in-use flag
                sPoolSize--;
                return m;
            }
        }
        return new Message();
    }

Message有2个重要的成员变量

    /*package*/ Handler target;
    /*package*/ Runnable callback;

target是最终去处理这条消息的handler,所以一个线程是允许存在多个handler,message根据target就知道要交给哪个handler去处理了
另外一个就是callback,这是一个runnable对象,如果我们使用postRunnable来发送消息,最终也会生成一个message,并把原来的runnable对象赋值给callback

private static Message getPostMessage(Runnable r) {
        Message m = Message.obtain();
        m.callback = r;
        return m;
    }

4.2sendmessage

sendMessage或是sendMessageDelayed最后都会走到sendMessageAtTime

public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }

enqueueMessage会把当前的message放入消息队列,继续到MessageQueue去看

boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }

        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }

            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

这段函数的目的是在消息队列中寻找一个合适的插入点,并完成消息的插入,消息队列实际上是一个链表的结构,先进先出,符合其用途,但是消息队列的顺序是按照消息的执行时间来的,即message.when,所以,即使有一个message很早就进来了,但是其执行时间比较晚,那么,在新的消息被放如消息队列后,原来的消息也会被移动到链表的尾部
需要注意的是,这里面涉及到一个重要的变量mBlocked,如果有一个消息需要延时执行,那么当消息队列中没有其他message需要立即处理的话,消息队列就会被阻塞住,mBlocke=true,这时如果再插入一条message并且需要执行的话就会唤醒消息队列,当然这里的阻塞/唤醒机制涉及到native层的知识,这里不做讨论

5.Looper.loop()

public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();
        for (;;) {
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }
            final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
            final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
            final long end;
            try {
                msg.target.dispatchMessage(msg);
                end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
            } finally {
            }
...
            msg.recycleUnchecked();
        }
    }

虽然loop函数比较长,但是实际上就是在循环中不断取出message并分发给对应的handler

Message next() {
        // Return here if the message loop has already quit and been disposed.
        // This can happen if the application tries to restart a looper after quit
        // which is not supported.
        final long ptr = mPtr;
        if (ptr == 0) {
            return null;
        }

        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }

            nativePollOnce(ptr, nextPollTimeoutMillis);

            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }
                // Process the quit message now that all pending messages have been handled.
                if (mQuitting) {
                    dispose();
                    return null;
                }
                // If first time idle, then get the number of idlers to run.
                // Idle handles only run if the queue is empty or if the first message
                // in the queue (possibly a barrier) is due to be handled in the future.
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    mBlocked = true;
                    continue;
                }
                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }
            // Run the idle handlers.
            // We only ever reach this code block during the first iteration.
            for (int i = 0; i < pendingIdleHandlerCount; i++) {
                final IdleHandler idler = mPendingIdleHandlers[i];
                mPendingIdleHandlers[i] = null; // release the reference to the handler
                boolean keep = false;
                try {
                    keep = idler.queueIdle();
                } catch (Throwable t) {
                    Log.wtf(TAG, "IdleHandler threw exception", t);
                }
                if (!keep) {
                    synchronized (this) {
                        mIdleHandlers.remove(idler);
                    }
                }
            }
            // Reset the idle handler count to 0 so we do not run them again.
            pendingIdleHandlerCount = 0;
            // While calling an idle handler, a new message could have been delivered
            // so go back and look again for a pending message without waiting.
            nextPollTimeoutMillis = 0;
        }
    }

需要注意的是,Looper和MeeesageQueue都有for循环的代码块,不同的是Looper用来持续取出message并处理,MeeesageQueue中用来遍历message的链表并返回message对象,Looper中的是死循环,而MeeesageQueue中的不是(链表的长度是一定的)
如果下一个消息需要延时执行,会计算一个nextPollTimeoutMillis,调用nativePollOnce(ptr, nextPollTimeoutMillis)阻塞当前的消息队列,nativePollOnce会走到native层,借助了linux的epoll机制,到时后会自动唤醒
正常情况message没有延时执行的话就会返回链表头部的message

6.主线程Looper中的死循环为什么没有导致应用程序卡死崩溃

  • 死循环是保证线程持续运行的手段,例如binder
  • activity的创建,oncreate,onresume,onstop等生命周期方法都是在ActivityThread中handler+message完成调用的,ActivityThread所在的主线程可以理解为应用进程本身
  • 导致主线程卡死是在onCreate/onStart/onResume等函数中执行时间太长
    所以,Looper中的死循环是保证程序持续运行的关键,当没有message要处理或者message延时执行时,looper进入阻塞状态,减少CPU资源的占用

(参考源码sdk-25,Android7.1)