欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Android Handler 源码解析

程序员文章站 2022-07-14 16:46:34
...

前言

我相信,用过Android的人基本都会使用Handler,或者多多少少会听到这个东西,在安卓里面,这东西太重要了,如果你还不会基本用法,那应该是需要反省一下。当然,用过它的人也不必沾沾自喜,我们真的很了解Handler吗,还是说只会使用?你有看过他的每一行代码?仔细思考过吗?对于我来说,确实没有,所以我带着问题,想全面了解 Handler。

是什么东西?

handler,英文有(信息)处理机的意思,这里我们暂且可以认为他有处理消息的功能,当然,这也是他最主要的功能,他还有其他的功能,我们可以根据源码一谈究竟。用最通俗的总结一下,他是用来接收从各个线程发过来的消息,然后集中处理的东西。你可以在主线程(MainThread)处理消息,在子线程(WorkerThread)发送消息,当然,这个关系也可以转换,下面我手写一小段代码展示一下(只为了演示,实际中不会这么写)

// 写在Activity中作为实例变量
private Handler mHandler = new Handler() {
      @Override
      public void handleMesssage(Message msg) {
             ui.setText("msg received");
      }      
}
// 启动一个线程发一个消息
new Thread(() -> mHandler.sendEmptyMessage());

上面简单的代码演示了如何从一个子线程发送消息到主线程,然后更新UI,至于Android不能再主线程更新UI,我想这个道理大家多少都知道原因,以后有机会再好好分析。

前世今生

很干净,只有自己

      public class Handler {}

源码分析

属性

这里个都是类变量,MAIN_THREAD_HANDLER 顾名思义,主线程的 Handler

    /*
     * Set this flag to true to detect anonymous, local or member classes
     * that extend this Handler class and that are not static. These kind
     * of classes can potentially create leaks.
     */
    private static final boolean FIND_POTENTIAL_LEAKS = false;
    private static final String TAG = "Handler";
    private static Handler MAIN_THREAD_HANDLER = null;

接下来这几个很重要,一个是Looper对象,MessageQueue,Callback,mAsynchronous,还有IMessager,集体有什么用,后面用到了再慢慢说

    final Looper mLooper;
    final MessageQueue mQueue;
    final Callback mCallback;
    final boolean mAsynchronous;
    IMessenger mMessenger;

这个东西大家用的可能不多,是一个内部接口,主要是说你可以不用写一个Handler子类就可以做到消息处理的功能。比如说上面的代码,我就是实现了自己的子类才能做到消息处理,你也可以实现这个Callback,然后 new Handler(Callback)就可以了。

    /**
     * Callback interface you can use when instantiating a Handler to avoid
     * having to implement your own subclass of Handler.
     */
    public interface Callback {
        /**
         * @param msg A {@link android.os.Message Message} object
         * @return True if no further handling is desired
         */
        public boolean handleMessage(Message msg);
    }

函数

构造函数
4个参数,都有默认值,分别是 Looper.myLooper() 获取到的,如果你在主线程初始化,那默认就是MainLooper,否则就是其他线程自己的Looper,这里有一个要注意的地方,就是说,当前线程必须执行过 Looper.prepare(),一般你在子线程都需要先执行这个方法,但在主线程是不需要的,因为早在应用启动的时候,ActivityThread 的 main 方法以及帮你执行了,这是我们程序比较早的一个入口。然后绑定MessageQueue,默认是Looper的Queue,还有Callback,默认为空,还有异步mAsynchronous ,默认为false。

    public Handler(Looper looper, Callback callback, boolean async) {
        mLooper = looper;
        mQueue = looper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }
    
    /**
     * Return the Looper object associated with the current thread.  Returns
     * null if the calling thread is not associated with a Looper.
     */
    // 静态方法获取Looper,使用到了ThreadLocal
    // 这个强大的变量,从当前线程取值,
    // 前提是你之前有放入过东西,不然怎么取
    public static @Nullable Looper myLooper() {
        return sThreadLocal.get();
    }

    // 静态方法,往ThreadLocal存在Looper实例
    private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }

然后是我们通常需要重写的函数,里面是消息处理的逻辑

    /**
     * Subclasses must implement this to receive messages.
     */
    public void handleMessage(Message msg) {
    }

这个函数原则上你也可以重写,但是不推荐,我们可以看到,它首先判断msg是否带有callback,如果不为空,则执行处理逻辑,否则判断mCallback是否为空,这两个Callback室友区别的,后面这个就是上面那个接口的实现类,而msg的callback是背后自己封装的,稍后我们在看这个细节。如果没有传进去callback,那么则调用handleMessage(),就到了我们重写的那个地方了,这些是在主线程执行的。

    /**
     * Handle system messages here.
     */
    public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }

发送消息的函数,默认是直接发送,注意,虽然是 EmptyMessage,但还是在内部封装了一个 Message,以后获取Message,不要再傻傻的new Message了,通过Message.obtain 或者 Handler.obtain。这一步可以在子线程调用


    /**
     * Sends a Message containing only the what value.
     *  
     * @return Returns true if the message was successfully placed in to the 
     *         message queue.  Returns false on failure, usually because the
     *         looper processing the message queue is exiting.
     */
    public final boolean sendEmptyMessage(int what) {
        return sendEmptyMessageDelayed(what, 0);
    }

    public final boolean sendEmptyMessageDelayed(int what, long delayMillis) {
        Message msg = Message.obtain();
        msg.what = what;
        return sendMessageDelayed(msg, delayMillis);
    }
    // 最后还是调用了atTime
    public final boolean sendMessageDelayed(Message msg, long delayMillis)
    {
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
    }

获取MessageQueue,将Message入队,注意,这里msg.target = this,将handler绑定到message上,到时候就能找到消息对应的handler实例了,强调一下,一个线程对应一个queue,一个queue可以有多个handler,所以有需要区分多个handler,就是这里设置target,绑定实例,然后入队,注意,异步也是在这里配置

    public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }
    private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }

MessageQueue 的源码,使用synchronised保证顺序性,至于MessageQueue的种种细节,下次在分析

    boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }

        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }

            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }
    Message next() {
        // Return here if the message loop has already quit and been disposed.
        // This can happen if the application tries to restart a looper after quit
        // which is not supported.
        final long ptr = mPtr;
        if (ptr == 0) {
            return null;
        }

        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }
            // poll 消息
            nativePollOnce(ptr, nextPollTimeoutMillis);

            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }

                // Process the quit message now that all pending messages have been handled.
                if (mQuitting) {
                    dispose();
                    return null;
                }

                // If first time idle, then get the number of idlers to run.
                // Idle handles only run if the queue is empty or if the first message
                // in the queue (possibly a barrier) is due to be handled in the future.
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    mBlocked = true;
                    continue;
                }

                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }

            // Run the idle handlers.
            // We only ever reach this code block during the first iteration.
            for (int i = 0; i < pendingIdleHandlerCount; i++) {
                final IdleHandler idler = mPendingIdleHandlers[i];
                mPendingIdleHandlers[i] = null; // release the reference to the handler

                boolean keep = false;
                try {
                    keep = idler.queueIdle();
                } catch (Throwable t) {
                    Log.wtf(TAG, "IdleHandler threw exception", t);
                }

                if (!keep) {
                    synchronized (this) {
                        mIdleHandlers.remove(idler);
                    }
                }
            }

            // Reset the idle handler count to 0 so we do not run them again.
            pendingIdleHandlerCount = 0;

            // While calling an idle handler, a new message could have been delivered
            // so go back and look again for a pending message without waiting.
            nextPollTimeoutMillis = 0;
        }
    }

获取消息,调用MessageQueue的next,然后看到了msg.target.dispatchMessage(msg)这个是在主线程的

    /**
     * Run the message queue in this thread. Be sure to call
     * {@link #quit()} to end the loop.
     */
    public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        // 获取 Queue 通过 MessageQueue
        final MessageQueue queue = me.mQueue;

        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();

        for (;;) {
            // 获取消息,调用MessageQueue的next
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            final Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }

            final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;

            final long traceTag = me.mTraceTag;
            if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
            }
            final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
            final long end;
            try {
                msg.target.dispatchMessage(msg);
                end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
            } finally {
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }
            if (slowDispatchThresholdMs > 0) {
                final long time = end - start;
                if (time > slowDispatchThresholdMs) {
                    Slog.w(TAG, "Dispatch took " + time + "ms on "
                            + Thread.currentThread().getName() + ", h=" +
                            msg.target + " cb=" + msg.callback + " msg=" + msg.what);
                }
            }

            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }

            // Make sure that during the course of dispatching the
            // identity of the thread wasn't corrupted.
            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }

            msg.recycleUnchecked();
        }
    }

当然,handler还有其他用法,比如post,但需要注意,这个虽然提交了一个Runnable,但跟随者消息链,你会发现,它的执行是直接在主线程调用run方法,也就是说运行在主线程的,所以使用时候需要注意了,别用错了

    public final boolean post(Runnable r)
    {
       return  sendMessageDelayed(getPostMessage(r), 0);
    }
    // callback message 的callback,与之前Callback有很大的区别
    private static Message getPostMessage(Runnable r) {
        Message m = Message.obtain();
        m.callback = r;
        return m;
    }
    public final boolean sendMessageDelayed(Message msg, long delayMillis)
    {
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
    }

小结

  • 使用方法,继承Handler,或者实现Callback,又或者post
  • 各部分运行在什么地方,主线程和子线程要区分
  • MessageQueue,Looper,Handler 之间的关系,在什么地方初始化

欢迎讨论