CRF代码及实现原理(二)
程序员文章站
2022-07-14 16:17:13
...
主要介绍CRF代码实现
代码来源:pytorch官网
代码链接: https://pytorch.org/tutorials/beginner/nlp/advanced_tutorial.html
配合另一篇文章讲解,看此篇之前,最好看一下另一篇文章(CRF原理以及维特比解码),看完之后会很容易理解
另一篇文章链接:https://blog.csdn.net/cpluss/article/details/88824303
注意看汉语注释,完整的代码详见上面的链接
#代码的主体部分
START_TAG = "<START>"
STOP_TAG = "<STOP>"
EMBEDDING_DIM = 5
HIDDEN_DIM = 4
# 简单的训练数据
training_data = [(
"the wall street journal reported today that apple corporation made money".split(),
"B I I I O O O B I O O".split()
), (
"georgia tech is a university in georgia".split(),
"B I O O O O B".split()
)]
word_to_ix = {}
for sentence, tags in training_data:
for word in sentence:
if word not in word_to_ix:
word_to_ix[word] = len(word_to_ix)
tag_to_ix = {"B": 0, "I": 1, "O": 2, START_TAG: 3, STOP_TAG: 4}
model = BiLSTM_CRF(len(word_to_ix), tag_to_ix, EMBEDDING_DIM, HIDDEN_DIM)
optimizer = optim.SGD(model.parameters(), lr=0.01, weight_decay=1e-4)
# Check predictions before training
with torch.no_grad():
precheck_sent = prepare_sequence(training_data[0][0], word_to_ix)
precheck_tags = torch.tensor([tag_to_ix[t] for t in training_data[0][1]], dtype=torch.long)
print(model(precheck_sent))
# Make sure prepare_sequence from earlier in the LSTM section is loaded
for epoch in range(
300): # again, normally you would NOT do 300 epochs, it is toy data
for sentence, tags in training_data:
# Step 1. Remember that Pytorch accumulates gradients.
# We need to clear them out before each instance
model.zero_grad()
# Step 2. Get our inputs ready for the network, that is,
# turn them into Tensors of word indices.
sentence_in = prepare_sequence(sentence, word_to_ix)
targets = torch.tensor([tag_to_ix[t] for t in tags], dtype=torch.long)
# Step 3. Run our forward pass.
#这里是重点,model.neg_log_likelihood是主要的函数
loss = model.neg_log_likelihood(sentence_in, targets)
# Step 4. Compute the loss, gradients, and update the parameters by
# calling optimizer.step()
loss.backward()
optimizer.step()
# Check predictions after training
with torch.no_grad():
precheck_sent = prepare_sequence(training_data[0][0], word_to_ix)
print(model(precheck_sent))
# We got it!
neg_log_likelihood函数
def neg_log_likelihood(self, sentence, tags):
#feats是通过一个bi-lstm得到的特征,维度为(seq_length, tagset_size),此处与crf关系不太大,因此不考虑
#tagset_size 表示为tag的数量,例如此代码中为5
feats = self._get_lstm_features(sentence)
#计算得分
forward_score = self._forward_alg(feats)
#计算实际得分
gold_score = self._score_sentence(feats, tags)
#计算误差,之后有loss.backward进行训练
return forward_score - gold_score
_forward_alg函数
def _forward_alg(self, feats):
# Do the forward algorithm to compute the partition function
init_alphas = torch.full((1, self.tagset_size), -10000.)
# START_TAG has all of the score.
init_alphas[0][self.tag_to_ix[START_TAG]] = 0.
# Wrap in a variable so that we will get automatic backprop
#这里的forward_var就是另一篇文章中提到的不断更新的δ参数
forward_var = init_alphas
# Iterate through the sentence
#这里的每一个feat,对应一个单词
for feat in feats:
alphas_t = [] # The forward tensors at this timestep
#这里每一个next_tag对应一个词性,下面计算的是:
#单词feat词性为next_tag时的得分
for next_tag in range(self.tagset_size):
# broadcast the emission score: it is the same regardless of
# the previous tag
#这个得分就是另一篇文章中提到的输入x对于y的影响的得分
emit_score = feat[next_tag].view(
1, -1).expand(1, self.tagset_size)
# the ith entry of trans_score is the score of transitioning to
# next_tag from i
#这个transition矩阵就是另一篇文章中提到t矩阵
#transition[i][j]代表j词性转变为i词性的得分(注意前后顺序)
trans_score = self.transitions[next_tag].view(1, -1)
# The ith entry of next_tag_var is the value for the
# edge (i -> next_tag) before we do log-sum-exp
next_tag_var = forward_var + trans_score + emit_score
# The forward variable for this tag is log-sum-exp of all the
# scores.
alphas_t.append(log_sum_exp(next_tag_var).view(1))
forward_var = torch.cat(alphas_t).view(1, -1)
terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]]
alpha = log_sum_exp(terminal_var)
return alpha