欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Hadoop学习笔记(1)-环境搭建

程序员文章站 2022-07-14 15:43:26
...

认识Hadoop

简单描述,Hadoop是一款实现分布式海量数据存储和离线海量数据分析的工具。官方地址。Hadoop提供的安装方式有单机模式、伪分布式模式和完全分布式模式,不知道为什么有强迫症似的,如果有分布式模式必须要安装完全分布式模式。为了部署完全分布式模式的Hadoop,我采用docker的方式部署3个容器。不得不说docker确实是一个非常适合个人学习的安装各种软件的工具,如果你是windows环境,docker可以让你很方便的安装一个软件在Linux系统上。

准备和部署

环境选择
  • 宿主机系统:win10
  • hadoop版本:3.1.0
  • 容器系统:ubuntu16
  • jdk:1.8
安装包准备

由于我的网络原因,我选择预先下载好jdk和hadoop在本地然后用docker来构建Hadoop镜像。jdk下载地址这里我选择的是Linux x64的压缩包,因为我的镜像以ubuntu16为基础镜像,然后Hadoop下载地址。然后将文件和DockerFile一起。

配置文件准备
  1. 配置core-site.xml

    <?xml version="1.0"?>
    <configuration>
        <property>
        	<!--指定namenode-->
            <name>fs.defaultFS</name>
            <value>hdfs://hadoop-master:9000/</value>
        </property>
    </configuration>
    
  2. 配置hdfs-site.xml

    <?xml version="1.0"?>
    <configuration>
        <property>
        	<!--指定namenode存放位置-->
            <name>dfs.namenode.name.dir</name>
            <value>file:///root/hdfs/namenode</value>
            <description>NameNode directory for namespace and transaction logs storage.</description>
        </property>
        <property>
        	<!--指定hdfs datanode存放位置-->
            <name>dfs.datanode.data.dir</name>
            <value>file:///root/hdfs/datanode</value>
            <description>DataNode directory</description>
        </property>
        <property>
        	<!--指定hdfs保存数据的副本数量-->
            <name>dfs.replication</name>
            <value>2</value>
        </property>
        <property>
            <name>dfs.permissions</name>
            <value>false</value> 
        </property>
    </configuration>
    
  3. mapred.xml

    <?xml version="1.0"?>
    <configuration>
        <property>
        	<!--配置hadoop(Map/Reduce)运行在YARN上-->
            <name>mapreduce.framework.name</name>
            <value>yarn</value>
        </property>
    </configuration>
    
  4. yarn-site.xml

    <?xml version="1.0"?>
    <configuration>
        <property>
        	<!--nomenodeManager获取数据的方式是shuffle-->
            <name>yarn.nodemanager.aux-services</name>
            <value>mapreduce_shuffle</value>
        </property>
        <property>
            <name>yarn.nodemanager.aux-services.mapreduce_shuffle.class</name>
            <value>org.apache.hadoop.mapred.ShuffleHandler</value>
        </property>
        <property>
        	<!--指定Yarn的老大(ResourceManager)的地址-->
            <name>yarn.resourcemanager.hostname</name>
            <value>hadoop-master</value>
        </property>
    </configuration>
    
  5. 配置Hadoop启动环境变量

    # The java implementation to use.
    export JAVA_HOME=/usr/lib/jvm/java-se-8u40-ri/
    
    
    export HADOOP_CONF_DIR=${HADOOP_CONF_DIR:-"/etc/hadoop"}
    
    # Extra Java CLASSPATH elements.  Automatically insert capacity-scheduler.
    for f in $HADOOP_HOME/contrib/capacity-scheduler/*.jar; do
      if [ "$HADOOP_CLASSPATH" ]; then
        export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$f
      else
        export HADOOP_CLASSPATH=$f
      fi
    done
    
    # Extra Java runtime options.  Empty by default.
    export HADOOP_OPTS="$HADOOP_OPTS -Djava.net.preferIPv4Stack=true"
    
    # Command specific options appended to HADOOP_OPTS when specified
    export HADOOP_NAMENODE_OPTS="-Dhadoop.security.logger=${HADOOP_SECURITY_LOGGER:-INFO,RFAS} -Dhdfs.audit.logger=${HDFS_AUDIT_LOGGER:-INFO,NullAppender} $HADOOP_NAMENODE_OPTS"
    export HADOOP_DATANODE_OPTS="-Dhadoop.security.logger=ERROR,RFAS $HADOOP_DATANODE_OPTS"
    
    export HADOOP_SECONDARYNAMENODE_OPTS="-Dhadoop.security.logger=${HADOOP_SECURITY_LOGGER:-INFO,RFAS} -Dhdfs.audit.logger=${HDFS_AUDIT_LOGGER:-INFO,NullAppender} $HADOOP_SECONDARYNAMENODE_OPTS"
    
    export HADOOP_NFS3_OPTS="$HADOOP_NFS3_OPTS"
    export HADOOP_PORTMAP_OPTS="-Xmx512m $HADOOP_PORTMAP_OPTS"
    
    # The following applies to multiple commands (fs, dfs, fsck, distcp etc)
    export HADOOP_CLIENT_OPTS="-Xmx512m $HADOOP_CLIENT_OPTS"
    
    export HADOOP_SECURE_DN_USER=${HADOOP_SECURE_DN_USER}
    
    export HADOOP_SECURE_DN_LOG_DIR=${HADOOP_LOG_DIR}/${HADOOP_HDFS_USER}
    
    export HADOOP_PID_DIR=${HADOOP_PID_DIR}
    export HADOOP_SECURE_DN_PID_DIR=${HADOOP_PID_DIR}
    
    # A string representing this instance of hadoop. $USER by default.
    export HADOOP_IDENT_STRING=$USER
    
    export HDFS_NAMENODE_USER=root
    export HDFS_DATANODE_USER=root
    export HDFS_SECONDARYNAMENODE_USER=root
    export YARN_RESOURCEMANAGER_USER=root
    export YARN_NODEMANAGER_USER=root
    
Dockerfile文件准备
FROM ubuntu:16.04
MAINTAINER houwanfei

# 安装openssh-server
RUN  apt-get update && apt-get install -y openssh-server

# 配置ssh免密登陆
RUN ssh-****** -t rsa -f ~/.ssh/id_rsa -P '' && \
    cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
# 复制jdk和配置jdk环境
RUN mkdir /usr/lib/jvm/
ADD openjdk-8u40-b25-linux-x64-10_feb_2015.tar.gz /usr/lib/jvm/
ENV JAVA_HOME /usr/lib/jvm/java-se-8u40-ri/ 
ENV PATH $PATH:$JAVA_HOME/bin

# 复制hadoop和配置hadoop配置
RUN mkdir /usr/local/hadoop/
ADD hadoop-3.1.1.tar.gz /usr/local/hadoop/
ENV HADOOP_HOME /usr/local/hadoop/hadoop-3.1.1
ENV PATH $PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

# 创建hadoop相关文件目录
RUN mkdir -p ~/hdfs/namenode && \
	mkdir -p ~/hdfs/datanode && \
	mkdir $HADOOP_HOME/logs

COPY config/* /tmp/

RUN mv /tmp/ssh_config ~/.ssh/config && \
    mv /tmp/hadoop-env.sh $HADOOP_HOME/etc/hadoop/hadoop-env.sh && \
    mv /tmp/hdfs-site.xml $HADOOP_HOME/etc/hadoop/hdfs-site.xml && \ 
    mv /tmp/core-site.xml $HADOOP_HOME/etc/hadoop/core-site.xml && \
    mv /tmp/mapred-site.xml $HADOOP_HOME/etc/hadoop/mapred-site.xml && \
    mv /tmp/yarn-site.xml $HADOOP_HOME/etc/hadoop/yarn-site.xml && \
    mv /tmp/workers $HADOOP_HOME/etc/hadoop/workers &&

RUN chmod +x ~/start-hadoop.sh && \
    chmod +x $HADOOP_HOME/sbin/start-yarn.sh 

# format namenode
RUN $HADOOP_HOME/bin/hdfs namenode -format

CMD [ "sh", "-c", "service ssh start; bash"]
```
文件结构

Hadoop学习笔记(1)-环境搭建

构建镜像
# 切换到上图的文件目录
docker build -t hou/hadoop .
创建自定义子网

创建自定义docker子网来部署hadoop节点

docker network create –subnet 172.19.0.1/16 hadoop

配置系统路由

hadoop读写都是客户端直连数据节点,因此通过映射容器端口的方式并不适用,因为一个客户端要读写文件时,先请求master节点,master节点告诉客户端应该去哪台机器读写,但是端口却是固定的,因此用映射宿主机端口的方式就有问题,因为应用程序不知道你映射了端口,会出现连接的情况。如果是windows环境,这里有一个解决办法,是将docker的ip加入系统路由,这样就可以不需要端口映射,直接在宿主机内开发测试。

# 172.19.0.0/16是我自定义的hadoop子网
route add 172.19.0.0/16 mask 255.255.255.0 10.0.75.2
启动容器
# 启动master容器
docker run -dit --name hadoop-master --net hadoop --hostname hadoop-master hou/hadoop
# 启动salve1容器
docker run -dit --name hadoop-salve1 --net hadoop --hostname hadoop-salve1 hou/hadoop
# 启动salve2容器
docker run -dit --name hadoop-salve2 --net hadoop --hostname hadoop-salve2 hou/hadoop
启动Hadoop集群
# 进入master容器
docker exec -it hadoop-master /bin/bash

# 进入hadoop目录的sbin目录,执行start-all.sh,就可以启动集群
./start-all.sh
验证集群启动成功
# 浏览器输入,ip要根据自己的,端口hadoop3.0之后管理页面端口换成了9870
http://172.19.0.2:9870/

结果,点击datanode,可以看到有三个数据节点,说明启动成功。
Hadoop学习笔记(1)-环境搭建

开发第一个HDFS程序

创建一个空的maven项目
加入jar依赖
<dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>${hadoop.version}</version>
            <exclusions>
                <exclusion>
                    <groupId>org.slf4j</groupId>
                    <artifactId>slf4j-log4j12</artifactId>
                </exclusion>
                <exclusion>
                    <groupId>javax.servlet</groupId>
                    <artifactId>servlet-api</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>${hadoop.version}</version>
            <exclusions>
                <exclusion>
                    <groupId>org.slf4j</groupId>
                    <artifactId>slf4j-log4j12</artifactId>
                </exclusion>
                <exclusion>
                    <groupId>javax.servlet</groupId>
                    <artifactId>servlet-api</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-hdfs</artifactId>
            <version>${hadoop.version}</version>
            <exclusions>
                <exclusion>
                    <groupId>org.slf4j</groupId>
                    <artifactId>slf4j-log4j12</artifactId>
                </exclusion>
                <exclusion>
                    <groupId>javax.servlet</groupId>
                    <artifactId>servlet-api</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
编写读写hdfs的代码
package com.hadoop.hadoop_demo.service;

import org.apache.commons.lang3.StringUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.net.URI;

/**
 * @Description
 * @auther houwf
 * @create 2020-01-15 14:53
 */
public class HdfsService {
    private static String hdfsPath = "hdfs://172.19.0.2:9000";

    public static Configuration getConfiguration() {
        Configuration configuration = new Configuration();
        configuration.set("fs.defaultFS", hdfsPath);
        return configuration;
    }

    /**
     * 获取HDFS文件系统对象
     * @return
     * @throws Exception
     */
    public static FileSystem getFileSystem() throws Exception {
        // 客户端去操作hdfs时是有一个用户身份的,默认情况下hdfs客户端api会从jvm中获取一个参数作为自己的用户身份
        // DHADOOP_USER_NAME=hadoop
        // 也可以在构造客户端fs对象时,通过参数传递进去
        return FileSystem.get(new URI(hdfsPath), getConfiguration());
    }

    /**
     * 在HDFS创建文件夹
     * @param path
     * @return
     * @throws Exception
     */
    public static boolean mkdir(String path) throws Exception {
        if (StringUtils.isEmpty(path)) {
            return false;
        }
        if (existFile(path)) {
            return true;
        }
        FileSystem fs = getFileSystem();
        // 目标路径
        Path srcPath = new Path(path);
        boolean isOk = fs.mkdirs(srcPath);
        fs.close();
        return isOk;
    }

    /**
     * 判断HDFS文件是否存在
     * @param path
     * @return
     * @throws Exception
     */
    public static boolean existFile(String path) throws Exception {
        if (StringUtils.isEmpty(path)) {
            return false;
        }
        FileSystem fs = getFileSystem();
        Path srcPath = new Path(path);
        boolean isExists = fs.exists(srcPath);
        return isExists;
    }

    public static void createFile(String path, String fileName, String localfile) throws Exception {
        FileSystem fileSystem = getFileSystem();

        BufferedReader br = new BufferedReader(new InputStreamReader(new FileInputStream(localfile)));
        Path newPath = new Path(path + "/" + fileName);
        FSDataOutputStream outputStream = fileSystem.create(newPath);
        String content = null;
        while ((content = br.readLine()) != null) {
            outputStream.writeBytes(content + "\n");
        }
        outputStream.close();
        fileSystem.close();
    }

    /**
    * 读文件
    */
    public static String readFile(String path) throws Exception {
        FileSystem fs = getFileSystem();
        Path srcPath = new Path(path);
        FSDataInputStream inputStream = fs.open(srcPath);
        BufferedReader reader = new BufferedReader(new InputStreamReader(inputStream));
        StringBuilder sb = new StringBuilder();
        String line = null;
        while ((line = reader.readLine()) != null) {
            sb.append(line);
        }
        return sb.toString();
    }

    public static void main(String[] args) throws Exception {
        HdfsService.mkdir("learn");
        System.out.println(HdfsService.existFile("learn"));
        String loaclFile = "E:/download/madame_bovary.txt";
        HdfsService.createFile("learn","madame_bovary", loaclFile);
//        System.out.println(HdfsService.readFile("learn/ncdc1901"));
    }
}