PyTorch学习(5)—分类
程序员文章站
2022-07-14 15:19:53
...
本篇博客主要介绍采用PyTorch对数据进行分类。
首先是分类数据(生成的假数据):
示例代码:
import torch
from torch.autograd import Variable
import torch.nn.functional as F
import matplotlib.pyplot as plt
# 生成假数据
n_data = torch.ones(100, 2)
x0 = torch.normal(2*n_data, 1) # class0 x data (tensor), shape=(100, 2)
y0 = torch.zeros(100) # class0 y data (tensor), shape=(100, 1)
x1 = torch.normal(-2*n_data, 1) # class1 x data (tensor), shape=(100, 2)
y1 = torch.ones(100) # class1 y data (tensor), shape=(100, 1)
x = torch.cat((x0, x1), 0).type(torch.FloatTensor) # shape (200, 2) FloatTensor = 32-bit floating
y = torch.cat((y0, y1), ).type(torch.LongTensor) # shape (200,) LongTensor = 64-bit integer
# 将Tensor转换为torch
x, y = Variable(x), Variable(y)
# 打印数据散点图
# plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=y.data.numpy(), s=100, lw=0, cmap='RdYlGn')
# plt.show()
class Net(torch.nn.Module):
# 初始化
def __init__(self, n_feature, n_hidden, n_output):
super(Net, self).__init__()
self.hidden = torch.nn.Linear(n_feature, n_hidden)
self.predict = torch.nn.Linear(n_hidden, n_output)
# 前向传递
def forward(self, x):
x = F.relu(self.hidden(x))
x = self.predict(x)
return x
net = Net(2, 10, 2)
# 输出定义的网络的结构
print(net)
plt.ion()
plt.show()
# 优化(给出神经网络的参数和学习速率)
optimizer = torch.optim.SGD(net.parameters(), lr=0.02)
# loss function,分类问题:交叉熵(CrossEntropyLoss) [0.1, 0.2, 0.7]=1表示分为每个类的概率
loss_func = torch.nn.CrossEntropyLoss()
for t in range(100):
out = net(x)
# 求误差
loss = loss_func(out, y)
# 优化
# 每一步首先将梯度降为0
optimizer.zero_grad()
# 进行反向传递更新参数
loss.backward()
# 优化梯度
optimizer.step()
if t % 2 == 0:
# plot and show learning process
plt.cla()
prediction = torch.max(out, 1)[1]
pred_y = prediction.data.numpy().squeeze()
target_y = y.data.numpy()
plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=pred_y, s=100, lw=0, cmap='RdYlGn')
accuracy = float((pred_y == target_y).astype(int).sum()) / float(target_y.size)
plt.text(1.5, -4, 'Accuracy=%.2f' % accuracy, fontdict={'size': 20, 'color': 'red'})
plt.pause(0.1)
plt.ioff()
plt.show()
分类过程:
上一篇: Hadoop分布式文件系统
下一篇: Hadoop分布式文件系统-HDFS