欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Flink DataStream之Kafka数据写入HDFS,并分区到Hive

程序员文章站 2022-07-14 13:29:32
...

Flink DataStream之Kafka数据写入HDFS,并分区到Hive

因业务要求,我们需要从Kafka中读取数据,变换后最终Sink到业务的消息队列中,为保证数据的可靠性,我们同时对Sink的结果数据,进行保存。最终选择将流数据Sink到HDFS上,在Flink中,同时也提供了HDFS Connector。下面就介绍如何将流式数据写入HDFS,同时将数据load到Hive表中。

一、pom.xml文件配置

<dependency>
  <groupId>org.apache.flink</groupId>
  <artifactId>flink-connector-filesystem_2.11</artifactId>
  <version>1.8.0</version>
</dependency>

二、Flink DataStream代码

代码是将最后的结果数据,拼接成CSV格式,最后写入HDFS中。下面的逻辑在真实地业务中删除许多。仅保留有用对大家的代码。

public class RMQAndBucketFileConnectSink {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);


        Properties p = new Properties();
        p.setProperty("bootstrap.servers", "dev-hdp-2.huazhu.com:6667,dev-hdp-3.huazhu.com:6667,dev-hdp-4.huazhu.com:6667");
        SingleOutputStreamOperator<String> ds = env.addSource(new FlinkKafkaConsumer010<String>("user", new SimpleStringSchema(), p))
                .map(new MapFunction<String, User>() {
                    @Override
                    public User map(String value) throws Exception {
                        return new Gson().fromJson(value, User.class);
                    }
                })
                .assignTimestampsAndWatermarks(new AscendingTimestampExtractor<User>() {
                    @Override
                    public long extractAscendingTimestamp(User element) {
                        return element.createTime;
                    }
                })
                .map(new MapFunction<User, String>() {
                    @Override
                    public String map(User value) throws Exception {
                        return value.userId + "," + value.name + "," + value.age + "," + value.sex + "," + value.createTime + "," + value.updateTime;
                    }
                });


        // 写入RabbitMQ
        RMQConnectionConfig rmqConnectionConfig = new RMQConnectionConfig.Builder()
                .setHost("localhost")
                .setVirtualHost("/")
                .setPort(5672)
                .setUserName("admin")
                .setPassword("admin")
                .build();

        // 写入RabbitMQ,如果队列是持久化的,需要重写RMQSink的 setupQueue方法
        RMQSink<String> rmqSink = new RMQSink<>(rmqConnectionConfig, "queue_name", new SimpleStringSchema());
        ds.addSink(rmqSink);


        // 写入HDFS
        BucketingSink<String> bucketingSink = new BucketingSink<>("/apps/hive/warehouse/users");
        // 设置以yyyyMMdd的格式进行切分目录,类似hive的日期分区
        bucketingSink.setBucketer(new DateTimeBucketer<>("yyyyMMdd", ZoneId.of("Asia/Shanghai")));
        // 设置文件块大小128M,超过128M会关闭当前文件,开启下一个文件
        bucketingSink.setBatchSize(1024 * 1024 * 128L);
        // 设置一小时翻滚一次
        bucketingSink.setBatchRolloverInterval(60 * 60 * 1000L);
        // 设置等待写入的文件前缀,默认是_
        bucketingSink.setPendingPrefix("");
        // 设置等待写入的文件后缀,默认是.pending
        bucketingSink.setPendingSuffix("");
        //设置正在处理的文件前缀,默认为_
        bucketingSink.setInProgressPrefix(".");

        ds.addSink(bucketingSink);


        env.execute("RMQAndBucketFileConnectSink");
    }
}

写入的HDFS文件目录如下:

/apps/hive/warehouse/users/20190708
/apps/hive/warehouse/users/20190709
/apps/hive/warehouse/users/20190710
...

三、Hive表的创建以及导入

创建hive表

create external table default.users(
	`userId` string,
	`name` string,
	`age` int,
	`sex` int,
	`ctime` string,
	`utime` string,
)
partitioned by(dt string) 
ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';

创建定时任务,每天凌晨导入HDFS文件到Hive,导入Hive脚本。

load_hive.sh如下:

#!/usr/bin/env bash

d=`date -d "-1 day" +%Y%m%d`

# 每天HDFS的数据导入hive分区中
/usr/hdp/2.6.3.0-235/hive/bin/hive -e "alter table default.users add partition (dt='${d}') location '/apps/hive/warehouse/users/${d}'"

使用crontab每天凌晨调度就行。