欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Flink DataStream读写Kafka

程序员文章站 2022-07-14 13:30:38
...

Flink提供了Kafka连接器,用于从或向Kafka读写数据。

本文总结Flink与Kafka集成中的问题,并对一些疑点进行总结和梳理。

问题一: 读Kafka的方式

## 读取一个Topic
FlinkKafkaConsumer010#FlinkKafkaConsumer010(String topic, DeserializationSchema<T> valueDeserializer, Properties props)
FlinkKafkaConsumer010#FlinkKafkaConsumer010(String topic, KafkaDeserializationSchema<T> deserializer, Properties props)
举例: 
    FlinkKafkaConsumer010<String> kafkaConsumer = new FlinkKafkaConsumer010<>("userActionLog1", new SimpleStringSchema(), kafkaProperties);
    DataStream<String> source = env.addSource(kafkaConsumer).name("KafkaSource").uid("source-id");

## 读取多个Topic
FlinkKafkaConsumer010#FlinkKafkaConsumer010(List<String> topics, DeserializationSchema<T> deserializer, Properties props)
FlinkKafkaConsumer010#FlinkKafkaConsumer010(List<String> topics, KafkaDeserializationSchema<T> deserializer, Properties props)
举例:
    FlinkKafkaConsumer010<String> kafkaConsumer = new FlinkKafkaConsumer010<>(Arrays.asList("userActionLog1","userActionLog2","userActionLog3"), new SimpleStringSchema(), kafkaProperties);
    DataStream<String> source = env.addSource(kafkaConsumer).name("KafkaSource").uid("source-id");
    

# 读取多个Topic
FlinkKafkaConsumer010#FlinkKafkaConsumer010(Pattern subscriptionPattern, DeserializationSchema<T> valueDeserializer, Properties props)
FlinkKafkaConsumer010#FlinkKafkaConsumer010(Pattern subscriptionPattern, KafkaDeserializationSchema<T> deserializer, Properties props)
举例:
    FlinkKafkaConsumer010<String> kafkaConsumer = new FlinkKafkaConsumer010<>(Pattern.compile("userActionLog[1-9]{1}"), new SimpleStringSchema(), kafkaProperties);
    DataStream<String> source = env.addSource(kafkaConsumer).name("KafkaSource").uid("source-id");
    
# 从指定的时间戳开始消费
kafkaConsumer.setStartFromTimestamp(long startupOffsetsTimestamp)

# 从指定的偏移量开始消费,可为每个分区单独设置偏移量
kafkaConsumer.setStartFromSpecificOffsets(Map<KafkaTopicPartition, Long> specificStartupOffsets)
    

问题二: 读Kafka与反序列化器

可通过org.apache.flink.api.common.serialization.DeserializationSchemaorg.apache.flink.streaming.connectors.kafka.KafkaDeserializationSchema,将从Kafka读取的二进制字节流反序列化成Flink内部支持的Java/Scala对象。

Flink内置支持以下2种常用反序列化器:

  1. org.apache.flink.api.common.serialization.SimpleStringSchema:反序列化成String。

  2. org.apache.flink.streaming.util.serialization.JSONKeyValueDeserializationSchema:反序列化成jackson ObjectNode。

如果想实现Kafka复杂JSON直接转换成想要的Object,可仿照org.apache.flink.api.common.serialization.SimpleStringSchema自定义即可。主要实现deserialize反序列化方法。

问题三: 读Kafka动态发现Topic、Partition

之前使用Spark Streaming,Spark 2.2.2不支持动态发现Kafka 0.10.1中新增的Topic(基于正则指定)和Partition。当新增了Topic或Partition,需要重启Spark Streaming任务。

在Flink中, 默认支持动态发现Kafka中新增的Topic或Partition,但需要手动开启。

kafkaProperties.put("flink.partition-discovery.interval-millis","10000");

flink.partition-discovery.interval-millis: 检查间隔,单位毫秒。

问题四: 读Kafka与Exactly Once语义

没有开启Checkpoint,默认自动提交Offset至外部存储(如Kafka Broker或Zookeeper),自动提交的间隔是5秒。Flink Kafka Consumer的容错依赖于自动提交的Offset。

开启Checkpoint,默认在Checkpoint完成后将存储在Checkpoint中的Offset再提交至外部存储(如Kafka Broker或0.8版本中的Zookeeper),Flink Kafka Consumer在Flink作业运行过程中的容错依赖于Checkpoint中的Offset,Flink作业恢复,则可能是从Checkpoint中的Offset恢复,也可能是从外部存储如Kafka Broker中的Offset恢复,具体取决于恢复方式。注意: 在这种方式下,Kafka Broker(或0.8中Zookeeper)存储的Offset仅用于监控消费进度。

总结,基于Kafka可重复消费的能力并结合Flink Checkpoint机制,Flink Kafka Consumer能提供Exactly-Once语义。

问题五: 写Kafka与Exactly Once语义

  • Kafka 0.8 Flink不提供Exactly-Once或At-Least-Once语义。

  • Kafka 0.9、0.10 Flink启用Checkpoint,FlinkKafkaProducer09FlinkKafkaProducer010提供At-Least-Once语义。除此之外,还需设置以下参数:

    setLogFailuresOnly(false): 若为true,Producer遇到异常时,仅记录失败时的日志,流处理程序继续。需要设置为false,当遇到异常,流处理程序失败,抛出异常恢复任务并重试发送。

    setFlushOnCheckpoint(true): Checkpoint中包含Kafka Producer Buffer中的数据,设置为true, 确保Checkpoint成功前,Buffer中的所有记录都已写入Kafka。

    retries: 重试次数,默认0,建议设置更大。

  • Kafka 0.11、1.0.0+ Flink启用Checkpoint,基于Two Phase Commit,FlinkKafkaProducer011FlinkKafkaProducer(Kafka >=1.0.0) 默认提供Exactly-Once语义。
    如需要其他语义Semantic.NONE(可能会丢或重)Semantic.AT_LEAST_ONCE(可能会重)Semantic.EXACTLY_ONCE(默认),可手动选择。

Kafka 0.10.1读数据并写入到Kafka 0.11.0.3并实现PV统计

项目依赖

<dependency>
            <groupId>org.slf4j</groupId>
            <artifactId>slf4j-api</artifactId>
            <version>1.7.13</version>
        </dependency>

        <dependency>
            <groupId>org.slf4j</groupId>
            <artifactId>slf4j-log4j12</artifactId>
            <version>1.7.13</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>1.8.0</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_2.11</artifactId>
            <version>1.8.0</version>
        </dependency>

        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>1.2.5</version>
        </dependency>


        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-kafka-0.10_2.11</artifactId>
            <version>1.8.0</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-kafka-0.11_2.11</artifactId>
            <version>1.8.0</version>
        </dependency>

        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-clients</artifactId>
            <version>0.11.0.3</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-runtime-web_2.11</artifactId>
            <version>1.8.0</version>
        </dependency>

代码实现

package com.bigdata.flink;

import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONObject;
import org.apache.flink.api.common.functions.AggregateFunction;
import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.common.typeinfo.TypeHint;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple4;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.configuration.ConfigConstants;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.configuration.RestOptions;
import org.apache.flink.runtime.state.StateBackend;
import org.apache.flink.runtime.state.filesystem.FsStateBackend;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.CheckpointConfig;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer010;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer011;
import org.apache.flink.streaming.connectors.kafka.internals.KeyedSerializationSchemaWrapper;
import org.apache.flink.util.Collector;

import java.text.Format;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Properties;

/**
 * Author: Wang Pei
 * Summary: 读写Kafka
 */
public class ReadWriteKafka {
    public static void main(String[] args) throws Exception{

        /**解析命令行参数*/
        ParameterTool fromArgs = ParameterTool.fromArgs(args);
        ParameterTool parameterTool = ParameterTool.fromPropertiesFile(fromArgs.getRequired("applicationProperties"));

        //checkpoint参数
        String checkpointDirectory = parameterTool.getRequired("checkpointDirectory");
        long checkpointSecondInterval = parameterTool.getLong("checkpointSecondInterval");

        //fromKafka参数
        String fromKafkaBootstrapServers = parameterTool.getRequired("fromKafka.bootstrap.servers");
        String fromKafkaGroupID = parameterTool.getRequired("fromKafka.group.id");
        String fromKafkaAutoOffsetReset= parameterTool.getRequired("fromKafka.auto.offset.reset");
        String fromKafkaTopic = parameterTool.getRequired("fromKafka.topic");

        //toKafka参数
        String toKafkaBootstrapServers = parameterTool.getRequired("toKafka.bootstrap.servers");
        String toKafkaTopic = parameterTool.getRequired("toKafka.topic");

        //窗口参数
        long tumblingWindowLength = parameterTool.getLong("tumblingWindowLength");
        long outOfOrdernessSeconds = parameterTool.getLong("outOfOrdernessSeconds");


        /**配置运行环境*/

        //设置Local Web Server
        Configuration config = new Configuration();
        config.setInteger(RestOptions.PORT,8081);
        config.setBoolean(ConfigConstants.LOCAL_START_WEBSERVER, true);
        StreamExecutionEnvironment env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(config);

        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);

        //设置StateBackend
        env.setStateBackend((StateBackend) new FsStateBackend(checkpointDirectory, true));

        //设置Checkpoint
        CheckpointConfig checkpointConfig = env.getCheckpointConfig();
        checkpointConfig.setCheckpointInterval(checkpointSecondInterval * 1000);
        checkpointConfig.setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
        checkpointConfig.enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);

        /**配置数据源*/
        Properties kafkaProperties = new Properties();
        kafkaProperties.put("bootstrap.servers",fromKafkaBootstrapServers);
        kafkaProperties.put("group.id",fromKafkaGroupID);
        kafkaProperties.put("auto.offset.reset",fromKafkaAutoOffsetReset);
        FlinkKafkaConsumer010<String> kafkaConsumer = new FlinkKafkaConsumer010<>(fromKafkaTopic, new SimpleStringSchema(), kafkaProperties);
        kafkaConsumer.setCommitOffsetsOnCheckpoints(true);
        DataStream<String> source = env.addSource(kafkaConsumer).name("KafkaSource").uid("source-id");

        /**抽取转换*/
        SingleOutputStreamOperator<Tuple4<String, String, String, Integer>> sourceMap = source
                .map((MapFunction<String, Tuple4<String, String, String, Integer>>) value -> {
                    Tuple4<String, String, String, Integer> output = new Tuple4<>();
                    try {
                        JSONObject obj = JSON.parseObject(value);
                        output.f0 = obj.getString("userID");
                        output.f1 = obj.getString("eventTime");
                        output.f2 = obj.getString("eventType");
                        output.f3 = obj.getInteger("productID");
                    } catch (Exception e) {
                        e.printStackTrace();
                    }
                    return output;
                    }).returns(new TypeHint<Tuple4<String, String, String, Integer>>(){})
                .name("Map: ExtractTransform").uid("map-id");

        /**过滤掉异常数据*/
        SingleOutputStreamOperator<Tuple4<String, String, String, Integer>> sourceFilter = sourceMap
                .filter((FilterFunction<Tuple4<String, String, String, Integer>>) value -> value != null)
                .name("Filter: FilterExceptionData").uid("filter-id");


        /**抽取时间戳并发射水印*/
        SingleOutputStreamOperator<Tuple4<String, String, String, Integer>> assignTimestampsAndWatermarks = sourceFilter.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<Tuple4<String, String, String, Integer>>(Time.seconds(outOfOrdernessSeconds)) {

            SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
            @Override
            public long extractTimestamp(Tuple4<String, String, String, Integer> element) {

                long timestamp = 0L;

                try {
                    Date date = format.parse(element.f1);
                    timestamp = date.getTime();
                } catch (ParseException e) {
                    e.printStackTrace();
                }

                return timestamp;
            }
        }).uid("watermark-id");


        /**窗口统计*/
        SingleOutputStreamOperator<String> aggregate = assignTimestampsAndWatermarks
                //默认用Hash方式
                .keyBy((KeySelector<Tuple4<String, String, String, Integer>, String>) value -> value.f2)
                .window(TumblingEventTimeWindows.of(Time.seconds(tumblingWindowLength)))
                //在每个窗口(Window)上应用WindowFunction(CustomWindowFunction)
                //CustomAggFunction用于增量聚合
                //在每个窗口上,先进行增量聚合(CustomAggFunction),然后将增量聚合的结果作为WindowFunction(CustomWindowFunction)的输入,计算后并输出
                //具体: 可参考底层AggregateApplyWindowFunction的实现
                .aggregate(new CustomAggFunction(), new CustomWindowFunction());

        //aggregate.print();

        /**结果输出*/
        Properties kafkaProducerProperties = new Properties();
        kafkaProducerProperties.setProperty("bootstrap.servers",toKafkaBootstrapServers);
        kafkaProducerProperties.setProperty("transaction.timeout.ms",60000+"");
        FlinkKafkaProducer011<String> kafkaProducer011 = new FlinkKafkaProducer011<>(
                toKafkaTopic,
                new KeyedSerializationSchemaWrapper<>(new SimpleStringSchema()),
                kafkaProducerProperties,
                FlinkKafkaProducer011.Semantic.EXACTLY_ONCE
        );

        aggregate.addSink(kafkaProducer011).name("outputToKafka");

        env.execute();

    }

    /**
     * 自定义AggregateFunction
     * 增量聚合,这里实现累加效果
     */
    static class CustomAggFunction implements AggregateFunction<Tuple4<String, String, String, Integer>,Long,Long> {

        @Override
        public Long createAccumulator() {
            return 0L;
        }

        @Override
        public Long add(Tuple4<String, String, String, Integer> value, Long accumulator) {
            return accumulator + 1;
        }

        @Override
        public Long getResult(Long accumulator) {
            return accumulator;
        }

        @Override
        public Long merge(Long accumulator1, Long accumulator2) {
            return accumulator1 + accumulator2;
        }
    }

    /**
     * 自定义WindowFunction
     * 对增量聚合的结果再做处理,并输出
     */
    static class CustomWindowFunction implements WindowFunction<Long, String,String, TimeWindow> {

        @Override
        public void apply(String key, TimeWindow window, Iterable<Long> input, Collector<String> out) throws Exception {

            Format format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

            long windowStart = window.getStart();
            long windowEnd = window.getEnd();
            Long windowPV = input.iterator().next();

            String output=format.format(new Date(windowStart))+","+format.format(new Date(windowEnd))+","+key+","+windowPV;

            out.collect(output);

        }
    }

}