Sklearn习题 [python]
程序员文章站
2022-07-14 12:46:06
...
题目:
代码:
from sklearn import datasets
from sklearn import cross_validation
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn import metrics
dataset = datasets.make_classification(n_samples=1000, n_features=10)
kf = cross_validation.KFold(len(dataset[0]), n_folds = 10, shuffle = True)
for train_index, test_index in kf:
X_train, y_train = dataset[0][train_index], dataset[1][train_index]
X_test, y_test = dataset[0][test_index], dataset[1][test_index]
clf = GaussianNB()
clf.fit(X_train, y_train)
pred = clf.predict(X_test)
print("GaussianNB:")
acc = metrics.accuracy_score(y_test, pred)
print('Accuracy:', acc)
f1 = metrics.f1_score(y_test, pred)
print('F1_score:', f1)
auc = metrics.roc_auc_score(y_test, pred)
print('ACU ROC:', auc)
print("")
print("SVC")
for C in [1e-02, 1e-01, 1e00, 1e01, 1e02]:
clf = SVC(C, kernel='rbf', gamma=0.1)
clf.fit(X_train, y_train)
pred = clf.predict(X_test)
print(str(C)+":")
acc = metrics.accuracy_score(y_test, pred)
print('Accuracy:', acc)
f1 = metrics.f1_score(y_test, pred)
print('F1_score:', f1)
auc = metrics.roc_auc_score(y_test, pred)
print('ACU ROC:', auc)
print("")
print("RandomForestClassifier:")
for n_estimators in [10, 100, 1000]:
clf = RandomForestClassifier(n_estimators)
clf.fit(X_train, y_train)
pred = clf.predict(X_test)
print(str(n_estimators) + ":")
acc = metrics.accuracy_score(y_test, pred)
print('Accuracy:', acc)
f1 = metrics.f1_score(y_test, pred)
print('F1_score:', f1)
auc = metrics.roc_auc_score(y_test, pred)
print('ACU ROC:', auc)
输出: