欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

分类中解决类别不平衡问题

程序员文章站 2022-07-14 11:12:27
...

分类中解决类别不平衡问题

在现实环境中,采集的数据(建模样本)往往是比例失衡的。比如网贷数据,逾期人数的比例是极低的(千分之几的比例);奢侈品消费人群鉴定等

在这一节中,我们一起看一下,当遇到数据类别不平衡的时候,我们该如何处理。在Python中,有Imblearn包,它就是为处理数据比例失衡而生的。

安装Imblearn包
pip3 install imbalanced-learn

解决类别不平衡数据方法介绍
过采样方法
对训练集里的少数类进行“过采样”(oversampling),即增加一些少数类样本使得正、反例数目接近,然后再进行学习。

随机过采样方法
复制

# 使用imblearn进行随机过采样
from imblearn.over_sampling import RandomOverSampler
ros = RandomOverSampler(random_state=0)
X_resampled, y_resampled = ros.fit_resample(X, y)
#查看结果
Counter(y_resampled)

#过采样后样本结果
# Counter({2: 4674, 1: 4674, 0: 4674})

# 数据集可视化
plt.scatter(X_resampled[:, 0], X_resampled[:, 1], c=y_resampled)
plt.show()

过采样代表性算法-SMOTE
对每个少数类样本 [公式] ,从它的最近邻中随机选择一个样本 [公式] ( [公式] 是少数类中的一个样本),然后在 [公式] 和 [公式] 之间的连线上随机选择一点作为新合成的少数类样本。

# SMOTE过采样
from imblearn.over_sampling import SMOTE
X_resampled, y_resampled = SMOTE().fit_resample(X, y)
Counter(y_resampled)

# 采样后样本结果
# [(0, 4674), (1, 4674), (2, 4674)]

# 数据集可视化
plt.scatter(X_resampled[:, 0], X_resampled[:, 1], c=y_resampled)
plt.show()


欠采样
直接对训练集中多数类样本进行“欠采样”(undersampling),即去除一些多数类中的样本使得正例、反例数目接近,然后再进行学习。

随机欠采样
from imblearn.under_sampling import RandomUnderSampler
rus = RandomUnderSampler(random_state=0)
X_resampled, y_resampled = rus.fit_resample(X, y)
Counter(y_resampled)

# 采样后结果
[(0, 64), (1, 64), (2, 64)]

# 数据集可视化
plt.scatter(X_resampled[:, 0], X_resampled[:, 1], c=y_resampled)
plt.show()

分类中解决类别不平衡问题缺点:
随机欠采样方法通过改变多数类样本比例以达到修改样本分布的目的,从而使样本分布较为均衡,但是这也存在一些问题。对于随机欠采样,由于采样的样本集合要少于原来的样本集合,因此会造成一些信息缺失,即将多数类样本删除有可能会导致分类器丢失有关多数类的重要信息。