欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Task2 数据分析

程序员文章站 2022-07-14 10:57:07
...

目的

1.EDA价值主要在于熟悉了解整个数据集的基本情况(缺失值,异常值),对数据集进行验证是否可以进行接下来的机器学习或者深度学习建模.

2.了解变量间的相互关系、变量与预测值之间的存在关系。

3.为特征工程做准备

学习目标

内容介绍

  • 数据总体了解:
    • 读取数据集并了解数据集大小,原始特征维度;
    • 通过info熟悉数据类型;
    • 粗略查看数据集中各特征基本统计量;
  • 缺失值和唯一值:
    • 查看数据缺失值情况
    • 查看唯一值特征情况
  • 深入数据-查看数据类型
    • 类别型数据
    • 数值型数据
      • 离散数值型数据
      • 连续数值型数据
  • 数据间相关关系
    • 特征和特征之间关系
    • 特征和目标变量之间关系
  • 用pandas_profiling生成数据报告

代码案例

导入库

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import datetime
import warnings
warnings.filterwarnings('ignore')

读取文件

data_train = pd.read_csv('./train.csv')
data_test_a = pd.read_csv('./testA.csv')

拓展

os.getcwd()查看当前工作目录
TSV与CSV的区别:
	从名称上即可知道,TSV是用制表符(Tab,'\t')作为字段值的分隔符;CSV是用半角逗号(',')作为字段值的分隔符;
	Python对TSV文件的支持: Python的csv模块准确的讲应该叫做dsv模块,因为它实际上是支持范式的分隔符分隔值文件(DSV,delimiter-separated values)的。 delimiter参数值默认为半角逗号,即默认将被处理文件视为CSV。当delimiter='\t'时,被处理文件就是TSV。
读取文件的部分(适用于文件特别大的场景)
	通过nrows参数,来设置读取文件的前多少行,nrows是一个大于等于0的整数。
	分块读取

总体了解

data_train.info() #了解数据类型
data_train.describe() # 查看基本统计量
print(f'There are {data_train.isnull().any().sum()} columns in train dataset with missing values.')# 查看数据集中特征缺失值

上面得到训练集有22列特征有缺失值,进一步查看缺失特征中缺失率大于50%的特征

have_null_fea_dict = (data_train.isnull().sum()/len(data_train)).to_dict()
fea_null_moreThanHalf = {}
for key,value in have_null_fea_dict.items():
    if value > 0.5:
        fea_null_moreThanHalf[key] = value

具体的查看缺失特征及缺失率:

# nan可视化
missing = data_train.isnull().sum()/len(data_train)
missing = missing[missing > 0]
missing.sort_values(inplace=True)
missing.plot.bar()

Task2 数据分析

查看训练集测试集中特征属性只有一值的特征

one_value_fea = [col for col in data_train.columns if data_train[col].nunique() <= 1]

one_value_fea_test = [col for col in data_test_a.columns if data_test_a[col].nunique() <= 1]

47列数据中有22列都缺少数据,这在现实世界中很正常。‘policyCode’具有一个唯一值(或全部缺失)。有很多连续变量和一些分类变量。

查看特征的数值类型有哪些,对象类型有哪些

  • 特征一般都是由类别型特征和数值型特征组成,而数值型特征又分为连续型和离散型。
  • 类别型特征有时具有非数值关系,有时也具有数值关系。比如‘grade’中的等级A,B,C等,是否只是单纯的分类,还是A优于其他要结合业务判断。
  • 数值型特征本是可以直接入模的,但往往风控人员要对其做分箱,转化为WOE编码进而做标准评分卡等操作。从模型效果上来看,特征分箱主要是为了降低变量的复杂性,减少变量噪音对模型的影响,提高自变量和因变量的相关度。从而使模型更加稳定。
numerical_fea = list(data_train.select_dtypes(exclude=['object']).columns)
category_fea = list(filter(lambda x: x not in numerical_fea,list(data_train.columns)))

数值型变量分析,数值型肯定是包括连续型变量和离散型变量的,找出来

#过滤数值型类别特征
def get_numerical_serial_fea(data,feas):
    numerical_serial_fea = []
    numerical_noserial_fea = []
    for fea in feas:
        temp = data[fea].nunique()
        if temp <= 10:
            numerical_noserial_fea.append(fea)
            continue
        numerical_serial_fea.append(fea)
    return numerical_serial_fea,numerical_noserial_fea
numerical_serial_fea,numerical_noserial_fea = get_numerical_serial_fea(data_train,numerical_fea)

数值类别型变量分析

data_train['term'].value_counts()#离散型变量

data_train['homeOwnership'].value_counts()#离散型变量

数值连续型变量分析

#每个数字特征得分布可视化
f = pd.melt(data_train, value_vars=numerical_serial_fea)
g = sns.FacetGrid(f, col="variable",  col_wrap=2, sharex=False, sharey=False)
g = g.map(sns.distplot, "value")
  • 查看某一个数值型变量的分布,查看变量是否符合正态分布,如果不符合正太分布的变量可以log化后再观察下是否符合正态分布。
  • 如果想统一处理一批数据变标准化 必须把这些之前已经正态化的数据提出
  • 正态化的原因:一些情况下正态非正态可以让模型更快的收敛,一些模型要求数据正态(eg. GMM、KNN),保证数据不要过偏态即可,过于偏态可能会影响模型预测结果。
#Ploting Transaction Amount Values Distribution
plt.figure(figsize=(16,12))
plt.suptitle('Transaction Values Distribution', fontsize=22)
plt.subplot(221)
sub_plot_1 = sns.distplot(data_train['loanAmnt'])
sub_plot_1.set_title("loanAmnt Distribuition", fontsize=18)
sub_plot_1.set_xlabel("")
sub_plot_1.set_ylabel("Probability", fontsize=15)

plt.subplot(222)
sub_plot_2 = sns.distplot(np.log(data_train['loanAmnt']))
sub_plot_2.set_title("loanAmnt (Log) Distribuition", fontsize=18)
sub_plot_2.set_xlabel("")
sub_plot_2.set_ylabel("Probability", fontsize=15)


非数值类别型变量分析: value_count()

变量分布可视化

单一变量分布可视化:

plt.figure(figsize=(8, 8))
sns.barplot(data_train["employmentLength"].value_counts(dropna=False)[:20],
            data_train["employmentLength"].value_counts(dropna=False).keys()[:20])
plt.show()

根绝y值不同可视化x某个特征的分布

  • 首先查看类别型变量在不同y值上的分布
train_loan_fr = data_train.loc[data_train['isDefault'] == 1]
train_loan_nofr = data_train.loc[data_train['isDefault'] == 0]
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(15, 8))
train_loan_fr.groupby('grade')['grade'].count().plot(kind='barh', ax=ax1, title='Count of grade fraud')
train_loan_nofr.groupby('grade')['grade'].count().plot(kind='barh', ax=ax2, title='Count of grade non-fraud')
train_loan_fr.groupby('employmentLength')['employmentLength'].count().plot(kind='barh', ax=ax3, title='Count of employmentLength fraud')
train_loan_nofr.groupby('employmentLength')['employmentLength'].count().plot(kind='barh', ax=ax4, title='Count of employmentLength non-fraud')
plt.show()

用pandas_profiling生成数据报告

import pandas_profiling
pfr = pandas_profiling.ProfileReport(data_train)
pfr.to_file("./example.html")
相关标签: 数据分析