欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Matplotlib学习

程序员文章站 2022-07-14 10:09:57
...

Exercise 11.1: Plotting a function

Matplotlib学习
代码如下:

import numpy as np
import matplotlib.pyplot as plt
import math

f, ax = plt.subplots(1, 1, figsize=(5,4))
x = np.linspace(0, 2, 800)                                 
y = [pow(math.sin(z-2), 2)* pow(math.e, -z*z) for z in x]  

ax.plot(x, y)
ax.set_xlim((0, 2))
ax.set_ylim((0, 1))
ax.set_xlabel(' x ')
ax.set_ylabel(' y ')
ax.set_title('ex1')

plt.tight_layout()
plt.show()
plt.savefig('line_plot_plus.png') #保存为图片

结果如图:
Matplotlib学习

Exercise 11.2: Data

Matplotlib学习
代码:

import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns

X = np.random.random_sample((20, 10)) * 10
b = np.random.random(10) * 3 - 1.5
z = np.random.normal((20,))
y = X.dot(b) + z
b_ = np.array(np.linalg.lstsq(X, y, rcond=-1)[0])
x = np.arange(0, 10)

f, ax = plt.subplots()
ax.set_xlim(0, 19)
ax.set_ylim(-1.5, 2)
ax.set_xlabel("index")
ax.set_ylabel("value")
ax.plot(x, b, 'rx', label='True coefficients')
ax.plot(x, b_, 'bo', label='Estimated coefficients')
plt.hlines(0, 0, 19, colors='k', linestyle="--")
plt.tight_layout()
plt.show()

结果:
Matplotlib学习

Exercise 11.3: Histogram and density estimation

Generate a vector z of 10000 observations from your favorite exotic distribution. Then make a plot that shows a histogram of z (with 25 bins), along with an estimate for the density, using a Gaussian kernel density estimator (see scipy.stats). See Figure 2 for an example plot.

代码:

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

z = np.random.normal(0.5, 1, size=(10000,))
sns.distplot(z, bins=25,kde_kws={'color':'g'})
plt.show()

结果:
Matplotlib学习