python可视化1
程序员文章站
2022-07-14 10:02:07
...
绘制散点图
import numpy as np
import matplotlib.pylab as pl
%matplotlib inline
a = np.arange(0, 2.0 * np.pi, 0.1)
print(a)
b = np.cos(a)
pl.scatter(a, b)
# pl.show()
[0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1. 1.1 1.2 1.3 1.4 1.5 1.6 1.7
1.8 1.9 2. 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3. 3.1 3.2 3.3 3.4 3.5
3.6 3.7 3.8 3.9 4. 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5. 5.1 5.2 5.3
5.4 5.5 5.6 5.7 5.8 5.9 6. 6.1 6.2]
<matplotlib.collections.PathCollection at 0x15465e2ff98>
import numpy as np
import matplotlib.pylab as pl
%matplotlib inline
x = np.random.random(100) # 0-1
print(x[0:10])
y = np.random.random(100)
pl.scatter(x, y, s=x * 500, c=u'r', marker=u'*')
pl.show()
# s 指定大小, c指定颜色, marker指定符号形状,
[0.15815532 0.65428075 0.80638782 0.17977135 0.86633134 0.60840757
0.95604924 0.92410809 0.48354069 0.47104306]
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
# x = np.linspace(0,10,100)
x = np.arange(0, 6, 0.1) # 以0.1为单位,生成0到6的数据
y1 = np.sin(x)
y2 = np.cos(x)
plt.plot(x, y1, label="sin")
plt.plot(x, y2, linestyle = "--", label="cos") # 用虚线绘制
plt.xlabel("x") # x轴标签
plt.ylabel("y") # y轴标签
plt.title('sin & cos') # 标题
plt.legend()
# plt.show()
<matplotlib.legend.Legend at 0x1545addeb38>
绘制饼状图
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
labels = ("Frogs", "Hogs", "Dogs", "Logs")
colors = ["yellowgreen", "gold", "#FF0000", "lightcoral"]
explode = (0, 0.1, 0, 0.1) # 使饼状图中第二片和第四片分开
fig = plt.figure()
ax = fig.gca()
ax.pie(np.random.random(4), # 四个值
explode = explode,
labels = labels,
colors = colors,
autopct = "%1.1f%%", # 百分比的格式 小数点保留一位, %% = "%"
shadow = True, # 是否显示阴影
startangle = 90, # 起始角度, 第一块从90度开始绘制, 从北向西转
radius = 0.25, # 饼的半径
center = (0, 0), # 中心位置
frame = True) #
ax.set_xticks([0,1]) #设置坐标轴刻度
ax.set_yticks([0,1]) #设置坐标轴刻度
# 0, 1被替换
ax.set_xticklabels(["Sunny", "Cloudy"]) #设置坐标轴显示的标签
ax.set_yticklabels(["Dry", "Rainy"]) #设置坐标轴显示的标签
ax.set_xlim((-0.5,1.5)) # 设置坐标轴跨度
ax.set_ylim((-0.5,1.5)) # 设置坐标轴跨度
ax.set_aspect('equal') # 设置横纵比相等
plt.show()
多图绘制到一个图片上
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
x = np.linspace(0, 2*np.pi, 500)
y = np.sin(x)
z = np.cos(x*x)
plt.figure(figsize=(8,4))
plt.plot(x,y,
label="$sin(x)$",
color="red", # 红色, 两个像素宽度
linewidth=2)
plt.plot(x,z,"b--", # 蓝色虚线
label="$cos(x^2)$")
plt.xlabel("time(s)")
plt.ylabel("volt")
plt.title("sin and cos figure using pyplot")
plt.ylim(-1.2, 1.2)
plt.legend() # 显示图例 左下角线的标识
plt.show() # 显示窗口
多图绘制到不同分布上
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
x = np.linspace(0, 2*np.pi, 500)
y1 = np.sin(x)
y2 = np.cos(x)
y3 = np.cos(x*x)
plt.figure(1)# 创建第一个图形
ax1 = plt.subplot(2,2,1) #第一行第一列第一个图形
plt.sca(ax1) # 选择ax1
plt.plot(x,y1,color="red")
plt.ylim = (-1.2, 1.2) # 限制y轴范围
ax2 = plt.subplot(2,2,2) #第一行第2列第2个图形
plt.sca(ax2) # 选择ax2
plt.plot(x,y2,"b--")
plt.ylim = (-1.2, 1.2) # 限制y轴范围
ax3 = plt.subplot(212, facecolor='r') # 背景色red
plt.sca(ax3) # 选择ax3
plt.plot(x,y3,"g--")
plt.ylim = (-1.2, 1.2) # 限制y轴范围
plt.legend() # 显示图例 左下角线的标识
plt.show() # 显示窗口
No handles with labels found to put in legend.
绘制三维立体图
import matplotlib.pyplot as plt
import numpy as np
import mpl_toolkits.mplot3d
x,y = np.mgrid[-2:2:20j, -2:2:20j] #步长使用j, 从-2到2分为了20个点
# 得到了20*20 400个点, 后面的j标识包含终点2
# print(x)
z = 50*np.sin(x+y)
ax = plt.subplot(111, projection='3d')
ax.plot_surface(x, y, z, # 画一个面
rstride=2,
cstride=1,
cmap=plt.cm.Blues_r)
ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.set_zlabel("Z")
plt.legend() # 显示图例 左下角线的标识
plt.show() # 显示窗口
rho,theta = np.mgrid[0:1:40j, 0:2*np.pi:40j]
z = rho**2
x = rho*np.cos(theta)
y = rho*np.sin(theta)
ax = plt.subplot(111, projection="3d")
ax.plot_surface(x,y,z)
plt.show()
No handles with labels found to put in legend.
绘制三维曲线
import matplotlib.pyplot as plt
import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
# import mpl_toolkits.mplot3d
mpl.rcParams["legend.fontsize"] = 10 # 图例字号
fig = plt.figure()
ax = fig.gca(projection="3d")
theta = np.linspace(-4 * np.pi, 4 * np.pi, 100)
z = np.linspace(-4, 4, 100) * 0.3
r = z**3 + 1
x = r * np.sin(theta)
y = r * np.cos(theta)
ax.plot(x, y, z, label="parametric curve")
ax.legend()
plt.show()
上一篇: 一图入门Matplotlib绘图
下一篇: zing生成带logo的二维码