创建型------单例模式
在阎宏博士的《JAVA与模式》一书中开头是这样描述单例模式的:
作为对象的创建模式,单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例。这个类称为单例类。
单例模式的结构
单例模式的特点:
- 单例类只能有一个实例
- 单例类必须自己创建自己的唯一实例。
- 单例类必须给所有其他对象提供这一实例。
饿汉式单例类
public class EagerSingleton {
private static EagerSingleton instance = new EagerSingleton();
/**
* 私有默认构造子
*/
private EagerSingleton(){}
/**
* 静态工厂方法
*/
public static EagerSingleton getInstance(){
return instance;
}
}
上面的例子中,在这个类被加载时,静态变量instance会被初始化,此时类的私有构造子会被调用。这时候,单例类的唯一实例就被创建出来了。
饿汉式其实是一种比较形象的称谓。既然饿,那么在创建对象实例的时候就比较着急,饿了嘛,于是在装载类的时候就创建对象实例。
private static EagerSingleton instance = new EagerSingleton();
饿汉式是典型的空间换时间,当类装载的时候就会创建类的实例,不管你用不用,先创建出来,然后每次调用的时候,就不需要再判断,节省了运行时间。
懒汉式单例类
public class LazySingleton {
private static LazySingleton instance = null;
/**
* 私有默认构造子
*/
private LazySingleton(){}
/**
* 静态工厂方法
*/
public static synchronized LazySingleton getInstance(){
if(instance == null){
instance = new LazySingleton();
}
return instance;
}
}
上面的懒汉式单例类实现里对静态工厂方法使用了同步化,以处理多线程环境。
懒汉式其实是一种比较形象的称谓。既然懒,那么在创建对象实例的时候就不着急。会一直等到马上要使用对象实例的时候才会创建,懒人嘛,总是推脱不开的时候才会真正去执行工作,因此在装载对象的时候不创建对象实例。
private static LazySingleton instance = null;
懒汉式是典型的时间换空间,就是每次获取实例都会进行判断,看是否需要创建实例,浪费判断的时间。当然,如果一直没有人使用的话,那就不会创建实例,则节约内存空间
由于懒汉式的实现是线程安全的,这样会降低整个访问的速度,而且每次都要判断。那么有没有更好的方式实现呢?
双重检查加锁
可以使用“双重检查加锁”的方式来实现,就可以既实现线程安全,又能够使性能不受很大的影响。那么什么是“双重检查加锁”机制呢?
所谓“双重检查加锁”机制,指的是:并不是每次进入getInstance方法都需要同步,而是先不同步,进入方法后,先检查实例是否存在,如果不存在才进行下面的同步块,这是第一重检查,进入同步块过后,再次检查实例是否存在,如果不存在,就在同步的情况下创建一个实例,这是第二重检查。这样一来,就只需要同步一次了,从而减少了多次在同步情况下进行判断所浪费的时间。
“双重检查加锁”机制的实现会使用关键字volatile,它的意思是:被volatile修饰的变量的值,将不会被本地线程缓存,所有对该变量的读写都是直接操作共享内存,从而确保多个线程能正确的处理该变量。
注意:在java1.4及以前版本中,很多JVM对于volatile关键字的实现的问题,会导致“双重检查加锁”的失败,因此“双重检查加锁”机制只只能用在java5及以上的版本。
public class Singleton {
private volatile static Singleton instance = null;
private Singleton(){}
public static Singleton getInstance(){
//先检查实例是否存在,如果不存在才进入下面的同步块
if(instance == null){
//同步块,线程安全的创建实例
synchronized (Singleton.class) {
//再次检查实例是否存在,如果不存在才真正的创建实例
if(instance == null){
instance = new Singleton();
}
}
}
return instance;
}
}
这种实现方式既可以实现线程安全地创建实例,而又不会对性能造成太大的影响。它只是第一次创建实例的时候同步,以后就不需要同步了,从而加快了运行速度。
提示:由于volatile关键字可能会屏蔽掉虚拟机中一些必要的代码优化,所以运行效率并不是很高。因此一般建议,没有特别的需要,不要使用。也就是说,虽然可以使用“双重检查加锁”机制来实现线程安全的单例,但并不建议大量采用,可以根据情况来选用。
根据上面的分析,常见的两种单例实现方式都存在小小的缺陷,那么有没有一种方案,既能实现延迟加载,又能实现线程安全呢?
Lazy initialization holder class模式
这个模式综合使用了Java的类级内部类和多线程缺省同步锁的知识,很巧妙地同时实现了延迟加载和线程安全。
1.相应的基础知识
- 什么是类级内部类?
简单点说,类级内部类指的是,有static修饰的成员式内部类。如果没有static修饰的成员式内部类被称为对象级内部类。
类级内部类相当于其外部类的static成分,它的对象与外部类对象间不存在依赖关系,因此可直接创建。而对象级内部类的实例,是绑定在外部对象实例中的。
类级内部类中,可以定义静态的方法。在静态方法中只能够引用外部类中的静态成员方法或者成员变量。
类级内部类相当于其外部类的成员,只有在第一次被使用(不是在父类被加载)的时候才被会装载。
-
多线程缺省同步锁的知识
大家都知道,在多线程开发中,为了解决并发问题,主要是通过使用synchronized来加互斥锁进行同步控制。但是在某些情况中,JVM已经隐含地为您执行了同步,这些情况下就不用自己再来进行同步控制了。这些情况包括:
1.由静态初始化器(在静态字段上或static{}块中的初始化器)初始化数据时
2.访问final字段时
3.在创建线程之前创建对象时
4.线程可以看见它将要处理的对象时
2.解决方案的思路
要想很简单地实现线程安全,可以采用静态初始化器的方式,它可以由JVM来保证线程的安全性。比如前面的饿汉式实现方式。但是这样一来,不是会浪费一定的空间吗?因为这种实现方式,会在类装载的时候就初始化对象,不管你需不需要。
如果现在有一种方法能够让类装载的时候不去初始化对象,那不就解决问题了?一种可行的方式就是采用类级内部类,在这个类级内部类里面去创建对象实例。这样一来,只要不使用到这个类级内部类,那就不会创建对象实例,从而同时实现延迟加载和线程安全。
示例代码如下:
public class Singleton {
private Singleton(){}
/**
* 类级的内部类,也就是静态的成员式内部类,该内部类的实例与外部类的实例
* 没有绑定关系,而且只有被调用到时才会装载,从而实现了延迟加载。
*/
private static class SingletonHolder{
/**
* 静态初始化器,由JVM来保证线程安全
*/
private static Singleton instance = new Singleton();
}
public static Singleton getInstance(){
return SingletonHolder.instance;
}
}
当getInstance方法第一次被调用的时候,它第一次读取SingletonHolder.instance,导致SingletonHolder类得到初始化;而这个类在装载并被初始化的时候,会初始化它的静态域,从而创建Singleton的实例,由于是静态的域,因此只会在虚拟机装载类的时候初始化一次,并由虚拟机来保证它的线程安全性。
这个模式的优势在于,getInstance方法并没有被同步,并且只是执行一个域的访问,因此延迟初始化并没有增加任何访问成本。
单例和枚举
按照《高效Java 第二版》中的说法:单元素的枚举类型已经成为实现Singleton的最佳方法。用枚举来实现单例非常简单,只需要编写一个包含单个元素的枚举类型即可。
public enum Singleton {
/**
* 定义一个枚举的元素,它就代表了Singleton的一个实例。
*/
uniqueInstance;
/**
* 单例可以有自己的操作
*/
public void singletonOperation(){
//功能处理
}
}
使用枚举来实现单实例控制会更加简洁,而且无偿地提供了序列化机制,并由JVM从根本上提供保障,绝对防止多次实例化,是更简洁、高效、安全的实现单例的方式。
以上转载: http://www.cnblogs.com/java-my-life/archive/2012/03/31/2425631.html
以下转载:https://www.cnblogs.com/cielosun/p/6596475.html
在用enum实现Singleton时介绍过三个特性,*序列化,线程安全,保证单例。这里我们就要探讨一下why的问题。
首先,我们都知道enum是由class实现的,换言之,enum可以实现很多class的内容,包括可以有member和member function,这也是我们可以用enum作为一个类来实现单例的基础。另外,由于enum是通过继承了Enum类实现的,enum结构不能够作为子类继承其他类,但是可以用来实现接口。此外,enum类也不能够被继承,在反编译中,我们会发现该类是final的。
其次,enum有且仅有private的构造器,防止外部的额外构造,这恰好和单例模式吻合,也为保证单例性做了一个铺垫。这里展开说下这个private构造器,如果我们不去手写构造器,则会有一个默认的空参构造器,我们也可以通过给枚举变量参量来实现类的初始化。这里举一个例子。
enum Color{
RED(1),GREEN(2),BLUE(3);
private int code;
Color(int code){
this.code=code;
}
public int getCode(){
return code;
}
}
需要注意的是,private修饰符对于构造器是可以省略的,但这不代表构造器的权限是默认权限。
目前我们对enum的结构和特性有了初步的了解,接下来探究一下原理层次的特性。
想要了解enum是如何工作的,就要对其进行反编译。
反编译后就会发现,使用枚举其实和使用静态类内部加载方法原理类似。枚举会被编译成如下形式:
public final class T extends Enum{
…
}
其中,Enum是Java提供给编译器的一个用于继承的类。枚举量的实现其实是public static final T 类型的未初始化变量,之后,会在静态代码中对枚举量进行初始化。所以,如果用枚举去实现一个单例,这样的加载时间其实有点类似于饿汉模式,并没有起到lazy-loading的作用。
对于序列化和反序列化,因为每一个枚举类型和枚举变量在JVM中都是唯一的,即Java在序列化和反序列化枚举时做了特殊的规定,枚举的writeObject、readObject、readObjectNoData、writeReplace和readResolve等方法是被编译器禁用的,因此也不存在实现序列化接口后调用readObject会破坏单例的问题。
对于线程安全方面,类似于普通的饿汉模式,通过在第一次调用时的静态初始化创建的对象是线程安全的。
因此,选择枚举作为Singleton的实现方式,相对于其他方式尤其是类似的饿汉模式主要有以下优点:
代码简单
*序列化
至于lazy-loading,考虑到一般情况不存在调用单例类又不需要实例化单例的情况,所以即便不能做到很好的lazy-loading,也并不是大问题。换言之,除了枚举这种方案,饿汉模式也在单例设计中广泛的被应用。