欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

使用systemtap调试Linux内核

程序员文章站 2022-07-13 22:08:24
...

最近在公司看Linux内核的nmi死锁检测功能的实现机制,当然,是因为它变了,所以我才看的,简单来说就是在红帽的某牛提交了一个内核patch:new nmi_watchdog using perf events,这个patch已经被合入到内核主线2.6.38版本,所以使用自该版本开始后内核的Linux系统,其/proc/interrupts显示的中断数不再按每秒1000次的频率增长。关于new nmi_watchdog问题,本文不再多说,后续写专篇文章,下面看使用systemtap调试Linux内核的几个案例,因为我最近就是通过这个手段来理解new nmi_watchdog的实现机制,相比利用printk或kgdb而言,使用systemtap更为简单方便,效率也大大提高。

系统环境:

[[email protected] ~]# cat /etc/issue
CentOS release 6.2 (Final)
Kernel \r on an \m

[[email protected] ~]# uname -a
Linux localhost.lenkydomain 3.6.11 #1 SMP Wed Feb 20 21:26:16 CST 2013 x86_64 x86_64 x86_64 GNU/Linux
[[email protected] ~]# stap -V
Systemtap translator/driver (version 2.1/0.152, non-git sources)
Copyright © 2005-2012 Red Hat, Inc. and others
This is free software; see the source for copying conditions.
enabled features: LIBRPM LIBSQLITE3 NSS BOOST_SHARED_PTR TR1_UNORDERED_MAP NLS

案例一,判断函数的真实执行路径,比如这个函数:

static inline void x86_assign_hw_event(struct perf_event *event,
				struct cpu_hw_events *cpuc, int i)
{
	struct hw_perf_event *hwc = &event->hw;
hwc->idx = cpuc->assign[i];
hwc->last_cpu = smp_processor_id();
hwc->last_tag = ++cpuc->tags[i];

if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {

a-> hwc->config_base = 0;
hwc->event_base = 0;
} else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
b-> hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
} else {
c-> hwc->config_base = x86_pmu_config_addr(hwc->idx);
hwc->event_base = x86_pmu_event_addr(hwc->idx);
hwc->event_base_rdpmc = hwc->idx;
}
}

我想知道nmi_watchdog的perf event走的是路径a?路径b?还是路径c?
以前利用printk的矬做法是修改这个函数,在a、b、c分别插入printk(“aaa\n”);、printk(“bbb\n”);、printk(“ccc\n”);,然后需要重新编译内核,重启机器跑一次逻辑,再根据打印结果做判断。
利用systemtap的做法是在上面三个路径上分别下探测点,并设置执行语句为打印相应的字符串即可。
比如在上面的路径b处下探测点:

[[email protected] ~]# stap -ve 'probe kernel.statement("*@arch/x86/kernel/cpu/perf_event.c:824"){printf("bbb\n")}'

在另一个终端触发nmi_watchdog设置逻辑:

[[email protected] ~]# echo 0 > /proc/sys/kernel/nmi_watchdog ; echo 1 > /proc/sys/kernel/nmi_watchdog ; 

可以看到探测点被执行到,并且打印了相关信息,根据打印的信息来看,探测点被多次执行到:

[[email protected] ~]# stap -ve 'probe kernel.statement("*@arch/x86/kernel/cpu/perf_event.c:824"){printf("bbb\n")}'
Pass 1: parsed user script and 90 library script(s) using 190140virt/24872res/2788shr/22676data kb, in 170usr/10sys/178real ms.
Pass 2: analyzed script: 2 probe(s), 0 function(s), 0 embed(s), 0 global(s) using 358304virt/79680res/18160shr/63552data kb, in 280usr/20sys/310real ms.
Pass 3: translated to C into "/tmp/stapGGJa26/stap_b1c9e6f6ba4bf7f4d0a8eb727add532b_1128_src.c" using 358304virt/79840res/18312shr/63552data kb, in 10usr/0sys/5real ms.
Pass 4: compiled C into "stap_b1c9e6f6ba4bf7f4d0a8eb727add532b_1128.ko" in 1210usr/290sys/1525real ms.
Pass 5: starting run.
bbb
bbb
bbb
bbb
bbb
bbb
bbb
bbb
bbb
bbb
bbb
bbb
bbb
bbb
bbb
bbb

三处都下探测点的完整执行情况:

[[email protected] perf_study]# cat x86_assign_hw_event.stp 
probe kernel.statement("*@arch/x86/kernel/cpu/perf_event.c:821"){printf("aaa\n")}
probe kernel.statement("*@arch/x86/kernel/cpu/perf_event.c:824"){printf("bbb\n")}
probe kernel.statement("*@arch/x86/kernel/cpu/perf_event.c:828"){printf("ccc\n")}
[[email protected] perf_study]# stap x86_assign_hw_event.stp 
bbb
bbb
bbb
bbb
bbb
bbb
bbb
bbb
bbb
bbb
bbb
bbb
bbb
bbb
bbb
bbb

另外一个常见的情况是要判断某个函数在某个逻辑中是否被跑到,以前的做法也是在函数的入口处加上打印语句,然后跑一遍功能逻辑,看是否有信息打印出来,现在利用systemtap可以这样:

[[email protected] perf_study]# stap -e 'probe kernel.function("x86_assign_hw_event"){printf("test\n")}'
test
test
test
test
test
test
test
test

案例二,获取函数调用堆栈,示例:

[[email protected] perf_study]# cat bt.stp 
#stap -v bt.stp schedule

probe kernel.function(@1){
print("----------------START-------------------------\n")
printf("In process [%s]\n", execname())
print_regs()
print_backtrace()
print("----------------END-------------------------\n")
exit()
}

[[email protected] perf_study]# stap -v bt.stp x86_assign_hw_event
Pass 1: parsed user script and 90 library script(s) using 190148virt/24884res/2784shr/22684data kb, in 170usr/10sys/179real ms.
Pass 2: analyzed script: 1 probe(s), 4 function(s), 2 embed(s), 0 global(s) using 344464virt/50624res/3872shr/47224data kb, in 500usr/290sys/788real ms.
Pass 3: using cached /root/.systemtap/cache/13/stap_13ea16365226db9619f3f14ab2a27efc_2536.c
Pass 4: using cached /root/.systemtap/cache/13/stap_13ea16365226db9619f3f14ab2a27efc_2536.ko
Pass 5: starting run.
----------------START-------------------------
In process [swapper/0]
RIP: ffffffff81024f40
RSP: ffff88022fc03d18 EFLAGS: 00000086
RAX: 0000000000000021 RBX: ffff88022fc0c6e0 RCX: 0000000000000000
RDX: ffff88022fc169f8 RSI: ffff88022fc03d7c RDI: ffff8802215efc00
RBP: ffff88022fc03d58 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000003 R11: 0000000000000003 R12: 0000000000000000
R13: ffff88022fc0c6e0 R14: ffff88022fc0c6e0 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff88022fc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
CR2: 0000000000419248 CR3: 0000000222468000 CR4: 00000000000007f0
0xffffffff81024f40 : x86_pmu_enable+0x140/0x280 [kernel]
0xffffffff8110c7eb : perf_pmu_enable+0x2b/0x40 [kernel]
0xffffffff810247a9 : x86_pmu_commit_txn+0xa9/0xb0 [kernel]
0xffffffff8110ee8a : group_sched_in+0x13a/0x170 [kernel]
0xffffffff8110fb3d : __perf_event_enable+0x29d/0x2e0 [kernel]
0xffffffff8110d038 : remote_function+0x48/0x60 [kernel]
0xffffffff810b2371 : generic_smp_call_function_single_interrupt+0xa1/0x100 [kernel]
0xffffffff810383f7 : smp_call_function_single_interrupt+0x27/0x40 [kernel]
0xffffffff815276ca : call_function_single_interrupt+0x6a/0x70 [kernel]
----------------END-------------------------
Pass 5: run completed in 10usr/30sys/4564real ms.

案例三,打印某代码路径上的变量值:

[[email protected] perf_study]# stap -e 'probe kernel.statement("[email protected]/x86/kernel/cpu/perf_event.c:824"){printf("%d\n", $hwc->idx)}'
33
33
33
33
33
33
33
33

如果有这样的提示错误:

[[email protected] perf_study]# stap -e 'probe kernel.statement("*@arch/x86/kernel/cpu/perf_event.c:824"){printf("%d\n", $hwc->idx)}'
semantic error: not accessible at this address (0xffffffff81024f8e, dieoffset: 0x343357): identifier '$hwc' at <input>:1:81
        source: probe kernel.statement("*@arch/x86/kernel/cpu/perf_event.c:824"){printf("%d\n", $hwc->idx)}
                                                                                                ^

Pass 2: analysis failed. Try again with another ‘–vp 01’ option.

那么可以用-L选项看一下到底有哪些可用变量:

[[email protected] perf_study]# stap -L 'kernel.statement("*@arch/x86/kernel/cpu/perf_event.c:824")'
kernel.statement("[email protected]/x86/kernel/cpu/perf_event.c:824") $hwc:struct hw_perf_event* $i:int $cpuc:struct cpu_hw_events* $event:struct perf_event*
kernel.statement("[email protected]/x86/kernel/cpu/perf_event.c:824") $n_running:int $cpuc:struct cpu_hw_events* $added:int

可以看到,是因为*匹配到两处(应该是宏的开启与否导致代码行号有移动,但个人暂不确定具体原因是否如此),因此可以明确使用“[email protected]/x86/kernel/cpu/perf_event.c:824”。

案例四,获知函数指针的具体指向,比如获取下面event_init函数指针的具体指向:

struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
	int ret;
idx = srcu_read_lock(&amp;pmus_srcu);

rcu_read_lock();
pmu = idr_find(&amp;pmu_idr, event-&gt;attr.type);
rcu_read_unlock();
if (pmu) {
	event-&gt;pmu = pmu;
	ret = pmu-&gt;event_init(event);
	if (ret)
		pmu = ERR_PTR(ret);
	goto unlock;
}

list_for_each_entry_rcu(pmu, &amp;pmus, entry) {
	event-&gt;pmu = pmu;
	ret = pmu-&gt;event_init(event);
	if (!ret)
		goto unlock;

	if (ret != -ENOENT) {
		pmu = ERR_PTR(ret);
		goto unlock;
	}
}
pmu = ERR_PTR(-ENOENT);

unlock:
srcu_read_unlock(&pmus_srcu, idx);

return pmu;

}

[[email protected] perf_study]# cat perf_init_event.stp 
probe kernel.statement("[email protected]/events/core.c:5892"){
    addr = sprintf("%p", $pmu->event_init);
    print("5892-Function name:\n")
    print_stack(addr)
}

probe kernel.statement("[email protected]/events/core.c:5900"){
    addr = sprintf("%p", $pmu->event_init);
    print("5900-Function name:\n")
    print_stack(addr)
}
[[email protected] perf_study]# stap -v perf_init_event.stp 
Pass 1: parsed user script and 90 library script(s) using 190092virt/24736res/2784shr/22628data kb, in 160usr/20sys/178real ms.
Pass 2: analyzed script: 2 probe(s), 7 function(s), 3 embed(s), 0 global(s) using 357076virt/62224res/3896shr/59836data kb, in 450usr/290sys/743real ms.
Pass 3: translated to C into "/tmp/stapsgSbwn/stap_8b6901af9c04b3e4907826ce793aca76_4839_src.c" using 354588virt/65020res/6820shr/59836data kb, in 170usr/10sys/175real ms.
Pass 4: compiled C into "stap_8b6901af9c04b3e4907826ce793aca76_4839.ko" in 2610usr/440sys/2892real ms.
Pass 5: starting run.
5900-Function name:
 0xffffffff81025510 : x86_pmu_event_init+0x0/0x220 [kernel]
5900-Function name:
 0xffffffff81025510 : x86_pmu_event_init+0x0/0x220 [kernel]
5900-Function name:
 0xffffffff81025510 : x86_pmu_event_init+0x0/0x220 [kernel]
5900-Function name:
 0xffffffff81025510 : x86_pmu_event_init+0x0/0x220 [kernel]
5900-Function name:
 0xffffffff81025510 : x86_pmu_event_init+0x0/0x220 [kernel]
5900-Function name:
 0xffffffff81025510 : x86_pmu_event_init+0x0/0x220 [kernel]
5900-Function name:
 0xffffffff81025510 : x86_pmu_event_init+0x0/0x220 [kernel]
5900-Function name:
 0xffffffff81025510 : x86_pmu_event_init+0x0/0x220 [kernel]

即指向的是函数x86_pmu_event_init()。

转载请保留地址:http://www.lenky.info/archives/2013/02/2209http://lenky.info/?p=2209