欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

style-transfer的实现(tensorflow)

程序员文章站 2022-07-13 21:53:43
...

风格转化是一个很流行的app应用,虽然现在过去风头了,但是自己实现一下也是好的。paper需要自己去解读,下面是图解。

style-transfer的实现(tensorflow)

中间是一个空白图片或者噪音图片。然后将空白图片和S表示style、C表示content进行最小损失函数,但是这样训练和验证会加大时间,测试太慢。然后使用如下的网络:

style-transfer的实现(tensorflow)

   将网络分成左边Image Transform Net和右侧的Loss Network,左面生成图像的转换,右面进行损失函数的计算,每个特征值的对比。其中,左边的先进性下采样,中间是残差网络,最后上采样是反卷积。其中x和yc是一个。

其中style.py文件如下:

from __future__ import print_function
import sys, os, pdb
sys.path.insert(0, 'src')
import numpy as np, scipy.misc 
from optimize import optimize
from argparse import ArgumentParser
from utils import save_img, get_img, exists, list_files
import evaluate

CONTENT_WEIGHT = 7.5e0
STYLE_WEIGHT = 1e2
TV_WEIGHT = 2e2

LEARNING_RATE = 1e-3
NUM_EPOCHS = 2
CHECKPOINT_DIR = 'checkpoints'
CHECKPOINT_ITERATIONS = 2000
VGG_PATH = 'data/imagenet-vgg-verydeep-19.mat'
TRAIN_PATH = 'data/train2014'
BATCH_SIZE = 4
DEVICE = '/gpu:0'
FRAC_GPU = 1

def build_parser():
    parser = ArgumentParser()
    parser.add_argument('--checkpoint-dir', type=str,
                        dest='checkpoint_dir', help='dir to save checkpoint in',
                        metavar='CHECKPOINT_DIR', required=True)

    parser.add_argument('--style', type=str,
                        dest='style', help='style image path',
                        metavar='STYLE', required=True)

    parser.add_argument('--train-path', type=str,
                        dest='train_path', help='path to training images folder',
                        metavar='TRAIN_PATH', default=TRAIN_PATH)

    parser.add_argument('--test', type=str,
                        dest='test', help='test image path',
                        metavar='TEST', default=False)

    parser.add_argument('--test-dir', type=str,
                        dest='test_dir', help='test image save dir',
                        metavar='TEST_DIR', default=False)

    parser.add_argument('--slow', dest='slow', action='store_true',
                        help='gatys\' approach (for debugging, not supported)',
                        default=False)

    parser.add_argument('--epochs', type=int,
                        dest='epochs', help='num epochs',
                        metavar='EPOCHS', default=NUM_EPOCHS)

    parser.add_argument('--batch-size', type=int,
                        dest='batch_size', help='batch size',
                        metavar='BATCH_SIZE', default=BATCH_SIZE)

    parser.add_argument('--checkpoint-iterations', type=int,
                        dest='checkpoint_iterations', help='checkpoint frequency',
                        metavar='CHECKPOINT_ITERATIONS',
                        default=CHECKPOINT_ITERATIONS)

    parser.add_argument('--vgg-path', type=str,
                        dest='vgg_path',
                        help='path to VGG19 network (default %(default)s)',
                        metavar='VGG_PATH', default=VGG_PATH)

    parser.add_argument('--content-weight', type=float,
                        dest='content_weight',
                        help='content weight (default %(default)s)',
                        metavar='CONTENT_WEIGHT', default=CONTENT_WEIGHT)
    
    parser.add_argument('--style-weight', type=float,
                        dest='style_weight',
                        help='style weight (default %(default)s)',
                        metavar='STYLE_WEIGHT', default=STYLE_WEIGHT)

    parser.add_argument('--tv-weight', type=float,
                        dest='tv_weight',
                        help='total variation regularization weight (default %(default)s)',
                        metavar='TV_WEIGHT', default=TV_WEIGHT)
    
    parser.add_argument('--learning-rate', type=float,
                        dest='learning_rate',
                        help='learning rate (default %(default)s)',
                        metavar='LEARNING_RATE', default=LEARNING_RATE)

    return parser

def check_opts(opts):
    exists(opts.checkpoint_dir, "checkpoint dir not found!")
    exists(opts.style, "style path not found!")
    exists(opts.train_path, "train path not found!")
    if opts.test or opts.test_dir:
        exists(opts.test, "test img not found!")
        exists(opts.test_dir, "test directory not found!")
    exists(opts.vgg_path, "vgg network data not found!")
    assert opts.epochs > 0
    assert opts.batch_size > 0
    assert opts.checkpoint_iterations > 0
    assert os.path.exists(opts.vgg_path)
    assert opts.content_weight >= 0
    assert opts.style_weight >= 0
    assert opts.tv_weight >= 0
    assert opts.learning_rate >= 0

def _get_files(img_dir):
    files = list_files(img_dir)
    return [os.path.join(img_dir,x) for x in files]

    
def main():
    parser = build_parser()
    options = parser.parse_args()
    check_opts(options)

    style_target = get_img(options.style)
    if not options.slow:
        content_targets = _get_files(options.train_path)
    elif options.test:
        content_targets = [options.test]

    kwargs = {
        "slow":options.slow,
        "epochs":options.epochs,
        "print_iterations":options.checkpoint_iterations,
        "batch_size":options.batch_size,
        "save_path":os.path.join(options.checkpoint_dir,'fns.ckpt'),
        "learning_rate":options.learning_rate
    }

    if options.slow:
        if options.epochs < 10:
            kwargs['epochs'] = 1000
        if options.learning_rate < 1:
            kwargs['learning_rate'] = 1e1

    args = [
        content_targets,
        style_target,
        options.content_weight,
        options.style_weight,
        options.tv_weight,
        options.vgg_path
    ]

    for preds, losses, i, epoch in optimize(*args, **kwargs):
        style_loss, content_loss, tv_loss, loss = losses

        print('Epoch %d, Iteration: %d, Loss: %s' % (epoch, i, loss))
        to_print = (style_loss, content_loss, tv_loss)
        print('style: %s, content:%s, tv: %s' % to_print)
        if options.test:
            assert options.test_dir != False
            preds_path = '%s/%s_%s.png' % (options.test_dir,epoch,i)
            if not options.slow:
                ckpt_dir = os.path.dirname(options.checkpoint_dir)
                evaluate.ffwd_to_img(options.test,preds_path,
                                     options.checkpoint_dir)
            else:
                save_img(preds_path, img)
    ckpt_dir = options.checkpoint_dir
    cmd_text = 'python evaluate.py --checkpoint %s ...' % ckpt_dir
    print("Training complete. For evaluation:\n    `%s`" % cmd_text)

if __name__ == '__main__':
    main()

下面是utils.py工具类的使用:

在里面实现获取图片,缩放图片,保存图片等操作

import scipy.misc, numpy as np, os, sys

def save_img(out_path, img):
    img = np.clip(img, 0, 255).astype(np.uint8)
    scipy.misc.imsave(out_path, img)

def scale_img(style_path, style_scale):
    scale = float(style_scale)
    o0, o1, o2 = scipy.misc.imread(style_path, mode='RGB').shape
    scale = float(style_scale)
    new_shape = (int(o0 * scale), int(o1 * scale), o2)
    style_target = _get_img(style_path, img_size=new_shape)
    return style_target

def get_img(src, img_size=False):
   img = scipy.misc.imread(src, mode='RGB') # misc.imresize(, (256, 256, 3))
   if not (len(img.shape) == 3 and img.shape[2] == 3):
       img = np.dstack((img,img,img))
       print (img.shape)
   if img_size != False:
       img = scipy.misc.imresize(img, img_size)
   return img

def exists(p, msg):
    assert os.path.exists(p), msg

def list_files(in_path):
    files = []
    for (dirpath, dirnames, filenames) in os.walk(in_path):
        files.extend(filenames)
        break

    return files


下面是模型优化的函数,最为重要的函数optimize.py

from __future__ import print_function
import functools
import vgg, pdb, time
import tensorflow as tf, numpy as np, os
import transform
from utils import get_img

STYLE_LAYERS = ('relu1_1', 'relu2_1', 'relu3_1', 'relu4_1', 'relu5_1')
CONTENT_LAYER = 'relu4_2'
DEVICES = 'CUDA_VISIBLE_DEVICES'

# np arr, np arr
def optimize(content_targets, style_target, content_weight, style_weight,
             tv_weight, vgg_path, epochs=2, print_iterations=1000,
             batch_size=4, save_path='saver/fns.ckpt', slow=False,
             learning_rate=1e-3, debug=False):
    if slow:
        batch_size = 1
    mod = len(content_targets) % batch_size
    if mod > 0:
        print("Train set has been trimmed slightly..")
        content_targets = content_targets[:-mod] 

    style_features = {}

    batch_shape = (batch_size,256,256,3)
    style_shape = (1,) + style_target.shape
    #print(style_shape)

    # precompute style features
    with tf.Graph().as_default(), tf.device('/cpu:0'), tf.Session() as sess:
        style_image = tf.placeholder(tf.float32, shape=style_shape, name='style_image')
        style_image_pre = vgg.preprocess(style_image)
        net = vgg.net(vgg_path, style_image_pre)
        style_pre = np.array([style_target])
        for layer in STYLE_LAYERS:
            features = net[layer].eval(feed_dict={style_image:style_pre})
            features = np.reshape(features, (-1, features.shape[3]))
            #print (features.shape)
            gram = np.matmul(features.T, features) / features.size
            style_features[layer] = gram

    with tf.Graph().as_default(), tf.Session() as sess:
        X_content = tf.placeholder(tf.float32, shape=batch_shape, name="X_content")
        X_pre = vgg.preprocess(X_content)

        # precompute content features
        content_features = {}
        content_net = vgg.net(vgg_path, X_pre)
        content_features[CONTENT_LAYER] = content_net[CONTENT_LAYER]

        if slow:
            preds = tf.Variable(
                tf.random_normal(X_content.get_shape()) * 0.256
            )
            preds_pre = preds
        else:
            preds = transform.net(X_content/255.0)
            preds_pre = vgg.preprocess(preds)

        net = vgg.net(vgg_path, preds_pre)

        content_size = _tensor_size(content_features[CONTENT_LAYER])*batch_size
        assert _tensor_size(content_features[CONTENT_LAYER]) == _tensor_size(net[CONTENT_LAYER])
        content_loss = content_weight * (2 * tf.nn.l2_loss(
            net[CONTENT_LAYER] - content_features[CONTENT_LAYER]) / content_size
        )

        style_losses = []
        for style_layer in STYLE_LAYERS:
            layer = net[style_layer]
            bs, height, width, filters = map(lambda i:i.value,layer.get_shape())
            size = height * width * filters
            feats = tf.reshape(layer, (bs, height * width, filters))
            feats_T = tf.transpose(feats, perm=[0,2,1])
            grams = tf.matmul(feats_T, feats) / size
            style_gram = style_features[style_layer]
            style_losses.append(2 * tf.nn.l2_loss(grams - style_gram)/style_gram.size)

        style_loss = style_weight * functools.reduce(tf.add, style_losses) / batch_size

        # total variation denoising
        tv_y_size = _tensor_size(preds[:,1:,:,:])
        tv_x_size = _tensor_size(preds[:,:,1:,:])
        y_tv = tf.nn.l2_loss(preds[:,1:,:,:] - preds[:,:batch_shape[1]-1,:,:])
        x_tv = tf.nn.l2_loss(preds[:,:,1:,:] - preds[:,:,:batch_shape[2]-1,:])
        tv_loss = tv_weight*2*(x_tv/tv_x_size + y_tv/tv_y_size)/batch_size

        loss = content_loss + style_loss + tv_loss

        # overall loss
        train_step = tf.train.AdamOptimizer(learning_rate).minimize(loss)
        sess.run(tf.global_variables_initializer())
        import random
        uid = random.randint(1, 100)
        print("UID: %s" % uid)
        for epoch in range(epochs):
            num_examples = len(content_targets)
            iterations = 0
            while iterations * batch_size < num_examples:
                start_time = time.time()
                curr = iterations * batch_size
                step = curr + batch_size
                X_batch = np.zeros(batch_shape, dtype=np.float32)
                for j, img_p in enumerate(content_targets[curr:step]):
                   X_batch[j] = get_img(img_p, (256,256,3)).astype(np.float32)

                iterations += 1
                assert X_batch.shape[0] == batch_size

                feed_dict = {
                   X_content:X_batch
                }

                train_step.run(feed_dict=feed_dict)
                end_time = time.time()
                delta_time = end_time - start_time
                if debug:
                    print("UID: %s, batch time: %s" % (uid, delta_time))
                is_print_iter = int(iterations) % print_iterations == 0
                if slow:
                    is_print_iter = epoch % print_iterations == 0
                is_last = epoch == epochs - 1 and iterations * batch_size >= num_examples
                should_print = is_print_iter or is_last
                if should_print:
                    to_get = [style_loss, content_loss, tv_loss, loss, preds]
                    test_feed_dict = {
                       X_content:X_batch
                    }

                    tup = sess.run(to_get, feed_dict = test_feed_dict)
                    _style_loss,_content_loss,_tv_loss,_loss,_preds = tup
                    losses = (_style_loss, _content_loss, _tv_loss, _loss)
                    if slow:
                       _preds = vgg.unprocess(_preds)
                    else:
                       saver = tf.train.Saver()
                       res = saver.save(sess, save_path)
                    yield(_preds, losses, iterations, epoch)

def _tensor_size(tensor):
    from operator import mul
    return functools.reduce(mul, (d.value for d in tensor.get_shape()[1:]), 1)

下面是vgg.py

import tensorflow as tf
import numpy as np
import scipy.io
import pdb

MEAN_PIXEL = np.array([ 123.68 ,  116.779,  103.939])

def net(data_path, input_image):
    layers = (
        'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1',

        'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',

        'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3',
        'relu3_3', 'conv3_4', 'relu3_4', 'pool3',

        'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3',
        'relu4_3', 'conv4_4', 'relu4_4', 'pool4',

        'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3',
        'relu5_3', 'conv5_4', 'relu5_4'
    )

    data = scipy.io.loadmat(data_path)
    mean = data['normalization'][0][0][0]
    mean_pixel = np.mean(mean, axis=(0, 1))
    weights = data['layers'][0]

    net = {}
    current = input_image
    for i, name in enumerate(layers):
        kind = name[:4]
        if kind == 'conv':
            kernels, bias = weights[i][0][0][0][0]
            # matconvnet: weights are [width, height, in_channels, out_channels]
            # tensorflow: weights are [height, width, in_channels, out_channels]
            kernels = np.transpose(kernels, (1, 0, 2, 3))
            bias = bias.reshape(-1)
            current = _conv_layer(current, kernels, bias)
        elif kind == 'relu':
            current = tf.nn.relu(current)
        elif kind == 'pool':
            current = _pool_layer(current)
        net[name] = current

    assert len(net) == len(layers)
    return net


def _conv_layer(input, weights, bias):
    conv = tf.nn.conv2d(input, tf.constant(weights), strides=(1, 1, 1, 1),
            padding='SAME')
    return tf.nn.bias_add(conv, bias)


def _pool_layer(input):
    return tf.nn.max_pool(input, ksize=(1, 2, 2, 1), strides=(1, 2, 2, 1),
            padding='SAME')


def preprocess(image):
    return image - MEAN_PIXEL


def unprocess(image):
    return image + MEAN_PIXEL


然后就是transform.py的转换网络,即生成网络:

import tensorflow as tf, pdb

WEIGHTS_INIT_STDEV = .1

def net(image):
    conv1 = _conv_layer(image, 32, 9, 1)
    conv2 = _conv_layer(conv1, 64, 3, 2)
    conv3 = _conv_layer(conv2, 128, 3, 2)
    resid1 = _residual_block(conv3, 3)
    resid2 = _residual_block(resid1, 3)
    resid3 = _residual_block(resid2, 3)
    resid4 = _residual_block(resid3, 3)
    resid5 = _residual_block(resid4, 3)
    conv_t1 = _conv_tranpose_layer(resid5, 64, 3, 2)
    conv_t2 = _conv_tranpose_layer(conv_t1, 32, 3, 2)
    conv_t3 = _conv_layer(conv_t2, 3, 9, 1, relu=False)
    preds = tf.nn.tanh(conv_t3) * 150 + 255./2
    return preds

def _conv_layer(net, num_filters, filter_size, strides, relu=True):
    weights_init = _conv_init_vars(net, num_filters, filter_size)
    strides_shape = [1, strides, strides, 1]
    net = tf.nn.conv2d(net, weights_init, strides_shape, padding='SAME')
    net = _instance_norm(net)
    if relu:
        net = tf.nn.relu(net)

    return net

def _conv_tranpose_layer(net, num_filters, filter_size, strides):
    weights_init = _conv_init_vars(net, num_filters, filter_size, transpose=True)

    batch_size, rows, cols, in_channels = [i.value for i in net.get_shape()]
    new_rows, new_cols = int(rows * strides), int(cols * strides)
    # new_shape = #tf.pack([tf.shape(net)[0], new_rows, new_cols, num_filters])

    new_shape = [batch_size, new_rows, new_cols, num_filters]
    tf_shape = tf.stack(new_shape)
    strides_shape = [1,strides,strides,1]

    net = tf.nn.conv2d_transpose(net, weights_init, tf_shape, strides_shape, padding='SAME')
    net = _instance_norm(net)
    return tf.nn.relu(net)

def _residual_block(net, filter_size=3):
    tmp = _conv_layer(net, 128, filter_size, 1)
    return net + _conv_layer(tmp, 128, filter_size, 1, relu=False)

def _instance_norm(net, train=True):
    batch, rows, cols, channels = [i.value for i in net.get_shape()]
    var_shape = [channels]
    mu, sigma_sq = tf.nn.moments(net, [1,2], keep_dims=True)
    shift = tf.Variable(tf.zeros(var_shape))
    scale = tf.Variable(tf.ones(var_shape))
    epsilon = 1e-3
    normalized = (net-mu)/(sigma_sq + epsilon)**(.5)
    return scale * normalized + shift

def _conv_init_vars(net, out_channels, filter_size, transpose=False):
    _, rows, cols, in_channels = [i.value for i in net.get_shape()]
    if not transpose:
        weights_shape = [filter_size, filter_size, in_channels, out_channels]
    else:
        weights_shape = [filter_size, filter_size, out_channels, in_channels]

    weights_init = tf.Variable(tf.truncated_normal(weights_shape, stddev=WEIGHTS_INIT_STDEV, seed=1), dtype=tf.float32)
    return weights_init