欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

RabbitMQ源码分析 – 网络层

程序员文章站 2022-07-13 15:11:16
...

(注:分析代码基于RabbitMQ 2.8.2

 

网络层的启动也是作为上一篇文章中提到的一个启动步骤来启动的,入口为[$RABBIT_SRC/src/rabbit_networking.erl --> boot/0],代码如下:

boot() ->
    ok = start(),
    ok = boot_tcp(),
    ok = boot_ssl().

[$RABBIT_SRC/src/rabbit_networking.erl --> start/0]构建rabbit_client_sup子监控树,[$RABBIT_SRC/src/rabbit_networking.erl --> boot_tcp/0],启动TCP监听,并构建成tcp_listener_sup子监控树,这两个子树都属于rabbit最顶层监控结点rabbit_supSSL的类似)。最终的监控树如下:

RabbitMQ源码分析 – 网络层
            
    
    博客分类: ErlangRabbitMQ eralngrabbitmq

 

(注:方框代表supervisor类型,圆角代表worker;虚线灰底的文字代表相应层子进程重启策略;各结点以各自所在的模块命名,实际监控树中的结点名有部分不同。)

[$RABBIT_SRC/src/tcp_listener.erl --> init/1]通过gen_tcp:listen/2启动监听,并根据ConcurrentAcceptorCount参数启动指定数量个tcp_acceptor(当前这个数量是1)。

     [$RABBIT_SRC/src/tcp_acceptor.erl]通过prim_inet:async_accept/2开始异步接受来自客户端的连接,主要代码如下:

handle_cast(accept, State) ->
    ok = file_handle_cache:obtain(),
    accept(State);
handle_info({inet_async, LSock, Ref, {ok, Sock}},
            State = #state{callback={M,F,A}, sock=LSock, ref=Ref}) ->
    %% patch up the socket so it looks like one we got from
    %% gen_tcp:accept/1
    {ok, Mod} = inet_db:lookup_socket(LSock),
    inet_db:register_socket(Sock, Mod),

    %% handle
    file_handle_cache:transfer(apply(M, F, A ++ [Sock])),
    ok = file_handle_cache:obtain(),
    %% accept more
accept(State);

accept(State = #state{sock=LSock}) ->
    case prim_inet:async_accept(LSock, -1) of
        {ok, Ref} -> {noreply, State#state{ref=Ref}};
        Error     -> {stop, {cannot_accept, Error}, State}
end.

[$RABBIT_SRC/src/ file_handle_cache.erl]在这里的主要作用是管理每个进程拥有的文件描述符数量,确保每个进程不会超过设定的上限。其中,obtain/0方法增加拥有的文件描述符数量,transfer/1将文件描述符的拥有权转移到另外一个进程(原进程拥有的打开描述符数量减1,转移目标进程拥有的文件描述符数量加1,这里的目标进程是通过callback返回的rabbit_reader进程)。

 

state结构中的callback是由[$RABBIT_SRC/src/rabbit_networking.erl]在启动TCP监听端口时指定的,其值为[$RABBIT_SRC/src/rabbit_networking.erl --> start_client/1],每个客户端连接上来后,会通过apply方法调用(见上面代码中的apply(M, F, A)),实际调用[$RABBIT_SRC/src/rabbit_networking.erl --> start_client/2],主要代码如下:

start_client(Sock, SockTransform) ->
    {ok, _Child, Reader} = supervisor:start_child(rabbit_tcp_client_sup, []),
    ok = rabbit_net:controlling_process(Sock, Reader),
    Reader ! {go, Sock, SockTransform},
    Reader.

(这里rabbit_tcp_client_sup对应上图中rabbit_client_sup结点)

 

supervisor:start_child(rabbit_tcp_client_sup, [])会按照上图中rabbit_client_sup下的监控树结构依次构造各个子结点。也就是说在每一次服务端接受一个新的连接时,都会创建一个rabbit_client_sup的子进程(simple_one_for_one),并依次构建各个子结点(上图中黄色区域)。并最终返回创建的rabbit_reader

 

rabbit_net:controlling_process/2将上一步返回的rabbit_reader进程作为接收socket消息的进程(调用gen_tcp:controlling_process/2实现,原始接受消息的是tcp_acceptor进程)。

 

Reader ! {go, Sock, SockTransform}向目标rabbit_reader进程发送消息,指示开始接受从客户端发送来的数据。

 

rabbit_reader进程在创建后,会通过如下代码等待上述的go消息:

receive
        {go, Sock, SockTransform} ->
            start_connection(
              Parent, ChannelSupSupPid, Collector, StartHeartbeatFun, Deb, Sock,
              SockTransform)
end

(参见[$RABBIT_SRC/src/rabbit_reader.erl --> init/4]

 

收到go消息后,rabbit_reader开始与客户端进行消息交互。(参见[$RABBIT_SRC/src/rabbit_reader.erl --> start_connection /7])主要代码如下:

start_connection(Parent, ChannelSupSupPid, Collector, StartHeartbeatFun, Deb,
                 Sock, SockTransform) ->
    process_flag(trap_exit, true),
    ConnStr = name(Sock),
    log(info, "accepting AMQP connection ~p (~s)~n", [self(), ConnStr]),
    ClientSock = socket_op(Sock, SockTransform),
    erlang:send_after(?HANDSHAKE_TIMEOUT * 1000, self(),
                      handshake_timeout),
    State = #v1{parent = Parent,…}, // 初始化state,部分代码省略
    try
        recvloop(Deb, switch_callback(rabbit_event:init_stats_timer(
                                       State, #v1.stats_timer),
                                      handshake, 8)),
        log(info, "closing AMQP connection ~p (~s)~n", [self(), ConnStr])
    catch
        // 异常处理
    after
        rabbit_net:maybe_fast_close(ClientSock),
        rabbit_event:notify(connection_closed, [{pid, self()}])
    end,
done.

从上面的log语句可以看出,这时候与客户端的连接已经确定,要开始AMQP的握手过程。接收消息的主循环由recvloop/2来完成,其中第二个参数State保存当前连接的各种状态。recvloop按照AMQP协议对数据进行解析。

 

recvloop并没有使用任何一个OTP的行为模式,而是自己设计的一种状态转换的逻辑,该逻辑的实现依赖于AMQP协议本身,其中关键的数据是State里的callback以及recv_lenAMQP协议要求,客户端建立一个连接时,必需向服务端发送8个字节的协议头(包含AMQP4个字符以及客户端使用的AMQP版本),所以rabbit在一开始的时候,设定的recv_len=8,也就是说rabbit希望从客户端收到8个字节的数据,然后对这8个字节的处理对应handshake处理逻辑(见上面代码的recvloop/2调用)。handshake完成后,rabbit会根据AMQP协议定义的frame格式等待客户端发送来的数据:先是7个字符的frame头(recv_len=7, callback=frame_header),然后是长度声明在头中的负载数据(recv_len=PayloadSize+1callback=frame_payload,每个frame都有个结束符,所以这里负载长度要加1),收到负载数据后,会根据负载数据做对应处理,处理完成后,继续待续下一个frame。所以整个协议解析的过程就如下图所示:

RabbitMQ源码分析 – 网络层
            
    
    博客分类: ErlangRabbitMQ eralngrabbitmq

rabbit会根据客户端发送的请求进行相应的操作,比如创建channel,创建exchange,创建queue等等。下篇会分析在创建每个实体时,都会做哪些工作。

  • RabbitMQ源码分析 – 网络层
            
    
    博客分类: ErlangRabbitMQ eralngrabbitmq
  • 大小: 28.3 KB
  • RabbitMQ源码分析 – 网络层
            
    
    博客分类: ErlangRabbitMQ eralngrabbitmq
  • 大小: 16.7 KB
相关标签: eralng rabbitmq