欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

java.nio.ByteBuffer用法小结

程序员文章站 2022-07-13 13:37:13
...

文章目录

  • 简介
  • 初始化
  • 向ByteBuffer写数据
  1. 手动写入数据
  2. 从SocketChannel中读入数据至ByteBuffer
  • 从ByteBuffer中读数据
  1. 复位position
  2. 读取数据
  3. 确保数据长度
  4. 字节序处理
  • 继续写入数据
  • 总结

 

简介

在Java的Socket编程中,若使用阻塞式(BIO),则往往通过ServerSocket的accept()方法获取到客户端Socket之后,再使用客户端Socket的InputStream和OutputStream进行读写。Socket.getInputstream.read(byte[] b)Socket.getOutputStream.write(byte[] b)的方法中的参数都是字节数组。这种阻塞式的Socket编程显然已经远远不能满足目前的并发式访问需求。

所以最近在项目中学习使用了Java原生NIO,这时则需要通过ServerSocketChannel的accept()方法获取到客户端的SocketChannel,再使用客户端SocketChannel直接进行读写。但SocketChannel.read(ByteBuffer dst)SocketChannel.write(ByteBuffer src)的方法中的参数则都变为了java.nio.ByteBuffer,该类型就是JavaNIO对byte数组的一种封装,其中包括了很多基本的操作,在此记录一下备忘。

ByteBuffer包含几个基本的属性:

  • position:当前的下标位置,表示进行下一个读写操作时的起始位置;
  • limit:结束标记下标,表示进行下一个读写操作时的(最大)结束位置;
  • capacity:该ByteBuffer容量;
  • mark: 自定义的标记位置;

无论如何,这4个属性总会满足如下关系:mark <= position <= limit <= capacity。目前对mark属性了解的不多,故在此暂不做讨论。其余3个属性可以分别通过ByteBuffer.position()ByteBuffer.limit()ByteBuffer.capacity()获取;其中position和limit属性也可以分别通过ByteBuffer.position(int newPos)ByteBuffer.limit(int newLim)进行设置,但由于ByteBuffer在读取和写出时是非阻塞的,读写数据的字节数往往不确定,故通常不会使用这两个方法直接进行修改。

初始化

首先无论读写,均需要初始化一个ByteBuffer容器。如上所述,ByteBuffer其实就是对byte数组的一种封装,所以可以使用静态方法wrap(byte[] data)手动封装数组,也可以通过另一个静态的allocate(int size)方法初始化指定长度的ByteBuffer。初始化后,ByteBuffer的position就是0;其中的数据就是初始化为0的字节数组;limit = capacity = 字节数组的长度;用户还未自定义标记位置,所以mark = -1,即undefined状态。下图就表示初始化了一个容量为16个字节的ByteBuffer,其中每个字节用两位16进制数表示:
java.nio.ByteBuffer用法小结

向ByteBuffer写数据

手动写入数据

可以手动通过put(byte b)put(byte[] b)方法向ByteBuffer中添加一个字节或一个字节数组。ByteBuffer也方便地提供了几种写入基本类型的put方法:putChar(char val)putShort(short val)putInt(int val)putFloat(float val)putLong(long val)putDouble(double val)。执行这些写入方法之后,就会以当前的position位置作为起始位置,写入对应长度的数据,并在写入完毕之后将position向后移动对应的长度。下图就表示了分别向ByteBuffer中写入1个字节的byte数据和4个字节的Integer数据的结果:
java.nio.ByteBuffer用法小结
但是当想要写入的数据长度大于ByteBuffer当前剩余的长度时,则会抛出BufferOverflowException异常,剩余长度的定义即为limit与position之间的差值(即 limit - position)。如上述例子中,若再执行buffer.put(new byte[12]);就会抛出BufferOverflowException异常,因为剩余长度为11。可以通过调用ByteBuffer.remaining();查看该ByteBuffer当前的剩余可用长度。

从SocketChannel中读入数据至ByteBuffer

在实际应用中,往往是调用SocketChannel.read(ByteBuffer dst),从SocketChannel中读入数据至指定的ByteBuffer中。由于ByteBuffer常常是非阻塞的,所以该方法的返回值即为实际读取到的字节长度。假设实际读取到的字节长度为 n,ByteBuffer剩余可用长度为 r,则二者的关系一定满足:0 <= n <= r。继续接上述的例子,假设调用read方法,从SocketChannel中读入了4个字节的数据,则buffer的情况如下:
java.nio.ByteBuffer用法小结

从ByteBuffer中读数据

复位position

现在ByteBuffer容器中已经存有数据,那么现在就要从ByteBuffer中将这些数据取出来解析。由于position就是下一个读写操作的起始位置,故在读取数据后直接写出数据肯定是不正确的,要先把position复位到想要读取的位置。

首先看一个rewind()方法,该方法仅仅是简单粗暴地将position直接复原到0,limit不变。这样进行读取操作的话,就是从第一个字节开始读取了。如下图:
java.nio.ByteBuffer用法小结
该方法虽然复位了position,可以从头开始读取数据,但是并未标记处有效数据的结束位置。如本例所述,ByteBuffer总容量为16字节,但实际上只读取了9个字节的数据,因此最后的7个字节是无效的数据。故rewind()方法常常用于字节数组的完整拷贝。

实际应用中更常用的是flip()方法,该方法不仅将position复位为0,同时也将limit的位置放置在了position之前所在的位置上,这样position和limit之间即为新读取到的有效数据。如下图:
java.nio.ByteBuffer用法小结

读取数据

在将position复位之后,我们便可以从ByteBuffer中读取有效数据了。类似put()方法,ByteBuffer同样提供了一系列get方法,从position开始读取数据。get()方法读取1个字节,getChar()getShort()getInt()getFloat()getLong()getDouble()则读取相应字节数的数据,并转换成对应的数据类型。如getInt()即为读取4个字节,返回一个Int。在调用这些方法读取数据之后,ByteBuffer还会将position向后移动读取的长度,以便继续调用get类方法读取之后的数据。

这一系列get方法也都有对应的接收一个int参数的重载方法,参数值表示从指定的位置读取对应长度的数据。如getDouble(2)则表示从下标为2的位置开始读取8个字节的数据,转换为double返回。不过实际应用中往往对指定位置的数据并不那么确定,所以带int参数的方法也不是很常用。get()方法则有两个重载方法:

  • get(byte[] dst, int offset, int length):表示尝试从 position 开始读取 length 长度的数据拷贝到 dst 目标数组 offset 到 offset + length 位置,相当于执行了
 for (int i = off; i < off + len; i++)
	dst[i] = buffer.get();
  • get(byte[] dst):尝试读取 dst 目标数组长度的数据,拷贝至目标数组,相当于执行了
 buffer.get(dst, 0, dst.length);

此处应注意读取数据后,已读取的数据也不会被清零。下图即为从例子中连续读取1个字节的byte和4个字节的int数据:
java.nio.ByteBuffer用法小结
此处同样要注意,当想要读取的数据长度大于ByteBuffer剩余的长度时,则会抛出 BufferUnderflowException 异常。如上例中,若再调用buffer.getLong()就会抛出 BufferUnderflowException 异常,因为 remaining 仅为4。

确保数据长度

为了防止出现上述的 BufferUnderflowException 异常,最好要在读取数据之前确保 ByteBuffer 中的有效数据长度足够。在此记录一下我的做法:

private void checkReadLen(
	long reqLen,
	ByteBuffer buffer,
	SocketChannel dataSrc
) throws IOException {
  int readLen;
  if (buffer.remaining() < reqLen) { // 剩余长度不够,重新读取
  	buffer.compact(); // 准备继续读取
    System.out.println("Buffer remaining is less than" + reqLen + ". Read Again...");
    while (true) {
      readLen = dataSrc.read(buffer);
      System.out.println("Read Again Length: " + readLen + "; Buffer Position: " + buffer.position());
      if (recvBuffer.position() >= reqLen) { // 可读的字节数超过要求字节数
        break;
      }
    }
    recvBuffer.flip();
    System.out.println("Read Enough Data. Remaining bytes in buffer: " + buffer.remaining());
  }
}

字节序处理

基本类型的值在内存中的存储形式还有字节序的问题,这种问题在不同CPU的机器之间进行网络通信时尤其应该注意。同时在调用ByteBuffer的各种get方法获取对应类型的数值时,ByteBuffer也会使用自己的字节序进行转换。因此若ByteBuffer的字节序与数据的字节序不一致,就会返回不正确的值。如对于int类型的数值8848,用16进制表示,大字节序为:0x 00 00 22 90;小字节序为:0x 90 22 00 00。若接收到的是小字节序的数据,但是却使用大字节序的方式进行解析,获取的就不是8848,而是-1876819968,也就是大字节序表示的有符号int类型的 0x 90 22 00 00。

JavaNIO提供了java.nio.ByteOrder枚举类来表示机器的字节序,同时提供了静态方法ByteOrder.nativeOrder()可以获取到当前机器使用的字节序,使用ByteBuffer中的order()方法即可获取该buffer所使用的字节序。同时也可以在该方法中传递一个ByteOrder枚举类型来为ByteBuffer指定相应的字节序。如调用buffer.order(ByteOrder.LITTLE_ENDIAN)则将buffer的字节序更改为小字节序。

一开始并不知道还可以这样操作,比较愚蠢地手动将读取到的数据进行字节序的转换。不过觉得还是可以记下来,也许在别的地方用得到。JDK中的 Integer 和 Long 都提供了一个静态方法reverseBytes()来将对应的 int 或 long 数值的字节序进行翻转。而若想读取 float 或 double,也可以先读取 int 或 long,然后调用 Float.intBitsToFloat(int val) 或 Double.longBitsToDouble(long val) 方法将对应的 int 值或 long 值进行转换。当ByteBuffer中的字节序与解析的字节序相反时,可以使用如下方法读取:

int i = Integer.reverseBytes(buffer.getInt()); 
float f = Float.intBitsToFloat(Integer.reverseBytes(buffer.getInt()));
long l = Long.reverseBytes(buffer.getLong());
double d = Double.longBitsToDouble(buffer.getLong());

继续写入数据

由于ByteBuffer往往是非阻塞式的,故不能确定新的数据是否已经读完,但这时候依然可以调用ByteBuffer的compact()方法切换到读取模式。该方法就是将 position 到 limit 之间还未读取的数据拷贝到 ByteBuffer 中数组的最前面,然后再将 position 移动至这些数据之后的一位,将 limit 移动至 capacity。这样 position 和 limit 之间就是已经读取过的老的数据或初始化的数据,就可以放心大胆地继续写入覆盖了。仍然使用之前的例子,调用 compact() 方法后状态如下:
java.nio.ByteBuffer用法小结

总结

总之ByteBuffer的基本用法就是:
初始化(allocate)–> 写入数据(read / put)–> 转换为写出模式(flip)–> 写出数据(get)–> 转换为写入模式(compact)–> 写入数据(read / put)…

参考资料

  1. java字节序、主机字节序和网络字节序扫盲贴
  2. java.nio.ByteBuffer用法小结

相关标签: java加密与解密