欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

TensorFlow2.0教程-keras 函数api

程序员文章站 2022-07-13 13:14:48
...

TensorFlow2.0教程-keras 函数api

完整tensorflow2.0教程代码请看tensorflow2.0:中文教程tensorflow2_tutorials_chinese(欢迎star)

Tensorflow2.0教程持续更新:

TensorFlow2.0教程- Keras 快速入门

TensorFlow2.0教程-keras 函数api

TensorFlow2.0教程-使用keras训练模型

# !pip install pydot
#!sudo apt-get install graphvizf
from __future__ import absolute_import, division, print_function
import tensorflow as tf
import tensorflow.keras as keras
import tensorflow.keras.layers as layers
tf.keras.backend.clear_session()

1构建简单的网络

1.1创建网络


inputs = tf.keras.Input(shape=(784,), name='img')
h1 = layers.Dense(32, activation='relu')(inputs)
h2 = layers.Dense(32, activation='relu')(h1)
outputs = layers.Dense(10, activation='softmax')(h2)
model = tf.keras.Model(inputs=inputs, outputs=outputs, name='mnist model')

model.summary()
keras.utils.plot_model(model, 'mnist_model.png')
keras.utils.plot_model(model, 'model_info.png', show_shapes=True)

1.2训练、验证及测试

(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
x_train = x_train.reshape(60000, 784).astype('float32') /255
x_test = x_test.reshape(10000, 784).astype('float32') /255
model.compile(optimizer=keras.optimizers.RMSprop(),
             loss='sparse_categorical_crossentropy', # 直接填api,后面会报错
             metrics=['accuracy'])
history = model.fit(x_train, y_train, batch_size=64, epochs=5, validation_split=0.2)
test_scores = model.evaluate(x_test, y_test, verbose=0)
print('test loss:', test_scores[0])
print('test acc:', test_scores[1])

1.3模型保持和序列化

model.save('model_save.h5')
del model
model = keras.models.load_model('model_save.h5')

2 使用共享网络创建多个模型

在函数API中,通过在图层图中指定其输入和输出来创建模型。 这意味着可以使用单个图层图来生成多个模型。

# 编码器网络和自编码器网络

encode_input = keras.Input(shape=(28,28,1), name='img')
h1 = layers.Conv2D(16, 3, activation='relu')(encode_input)
h1 = layers.Conv2D(32, 3, activation='relu')(h1)
h1 = layers.MaxPool2D(3)(h1)
h1 = layers.Conv2D(32, 3, activation='relu')(h1)
h1 = layers.Conv2D(16, 3, activation='relu')(h1)
encode_output = layers.GlobalMaxPool2D()(h1)

encode_model = keras.Model(inputs=encode_input, outputs=encode_output, name='encoder')
encode_model.summary()

h2 = layers.Reshape((4, 4, 1))(encode_output)
h2 = layers.Conv2DTranspose(16, 3, activation='relu')(h2)
h2 = layers.Conv2DTranspose(32, 3, activation='relu')(h2)
h2 = layers.UpSampling2D(3)(h2)
h2 = layers.Conv2DTranspose(16, 3, activation='relu')(h2)
decode_output = layers.Conv2DTranspose(1, 3, activation='relu')(h2)

autoencoder = keras.Model(inputs=encode_input, outputs=decode_output, name='autoencoder')
autoencoder.summary()




可以把整个模型,当作一层网络使用

encode_input = keras.Input(shape=(28,28,1), name='src_img')
h1 = layers.Conv2D(16, 3, activation='relu')(encode_input)
h1 = layers.Conv2D(32, 3, activation='relu')(h1)
h1 = layers.MaxPool2D(3)(h1)
h1 = layers.Conv2D(32, 3, activation='relu')(h1)
h1 = layers.Conv2D(16, 3, activation='relu')(h1)
encode_output = layers.GlobalMaxPool2D()(h1)

encode_model = keras.Model(inputs=encode_input, outputs=encode_output, name='encoder')
encode_model.summary()

decode_input = keras.Input(shape=(16,), name='encoded_img')
h2 = layers.Reshape((4, 4, 1))(decode_input)
h2 = layers.Conv2DTranspose(16, 3, activation='relu')(h2)
h2 = layers.Conv2DTranspose(32, 3, activation='relu')(h2)
h2 = layers.UpSampling2D(3)(h2)
h2 = layers.Conv2DTranspose(16, 3, activation='relu')(h2)
decode_output = layers.Conv2DTranspose(1, 3, activation='relu')(h2)
decode_model = keras.Model(inputs=decode_input, outputs=decode_output, name='decoder')
decode_model.summary()

autoencoder_input = keras.Input(shape=(28,28,1), name='img')
h3 = encode_model(autoencoder_input)
autoencoder_output = decode_model(h3)
autoencoder = keras.Model(inputs=autoencoder_input, outputs=autoencoder_output,
                          name='autoencoder')
autoencoder.summary()

3.复杂网络结构构建

3.1多输入与多输出网络

# 构建一个根据文档内容、标签和标题,预测文档优先级和执行部门的网络
# 超参
num_words = 2000
num_tags = 12
num_departments = 4

# 输入
body_input = keras.Input(shape=(None,), name='body')
title_input = keras.Input(shape=(None,), name='title')
tag_input = keras.Input(shape=(num_tags,), name='tag')

# 嵌入层
body_feat = layers.Embedding(num_words, 64)(body_input)
title_feat = layers.Embedding(num_words, 64)(title_input)

# 特征提取层
body_feat = layers.LSTM(32)(body_feat)
title_feat = layers.LSTM(128)(title_feat)
features = layers.concatenate([title_feat,body_feat, tag_input])

# 分类层
priority_pred = layers.Dense(1, activation='sigmoid', name='priority')(features)
department_pred = layers.Dense(num_departments, activation='softmax', name='department')(features)


# 构建模型
model = keras.Model(inputs=[body_input, title_input, tag_input],
                    outputs=[priority_pred, department_pred])
model.summary()
keras.utils.plot_model(model, 'multi_model.png', show_shapes=True)
model.compile(optimizer=keras.optimizers.RMSprop(1e-3),
             loss={'priority': 'binary_crossentropy',
                  'department': 'categorical_crossentropy'},
             loss_weights=[1., 0.2])

import numpy as np
# 载入输入数据
title_data = np.random.randint(num_words, size=(1280, 10))
body_data = np.random.randint(num_words, size=(1280, 100))
tag_data = np.random.randint(2, size=(1280, num_tags)).astype('float32')
# 标签
priority_label = np.random.random(size=(1280, 1))
department_label = np.random.randint(2, size=(1280, num_departments))
# 训练
history = model.fit(
    {'title': title_data, 'body':body_data, 'tag':tag_data},
    {'priority':priority_label, 'department':department_label},
    batch_size=32,
    epochs=5
)

3.2小型残差网络

inputs = keras.Input(shape=(32,32,3), name='img')
h1 = layers.Conv2D(32, 3, activation='relu')(inputs)
h1 = layers.Conv2D(64, 3, activation='relu')(h1)
block1_out = layers.MaxPooling2D(3)(h1)

h2 = layers.Conv2D(64, 3, activation='relu', padding='same')(block1_out)
h2 = layers.Conv2D(64, 3, activation='relu', padding='same')(h2)
block2_out = layers.add([h2, block1_out])

h3 = layers.Conv2D(64, 3, activation='relu', padding='same')(block2_out)
h3 = layers.Conv2D(64, 3, activation='relu', padding='same')(h3)
block3_out = layers.add([h3, block2_out])

h4 = layers.Conv2D(64, 3, activation='relu')(block3_out)
h4 = layers.GlobalMaxPool2D()(h4)
h4 = layers.Dense(256, activation='relu')(h4)
h4 = layers.Dropout(0.5)(h4)
outputs = layers.Dense(10, activation='softmax')(h4)

model = keras.Model(inputs, outputs, name='small resnet')
model.summary()
keras.utils.plot_model(model, 'small_resnet_model.png', show_shapes=True)

(x_train, y_train), (x_test, y_test) = keras.datasets.cifar10.load_data()
x_train = x_train.astype('float32') / 255
x_test = y_train.astype('float32') / 255
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)

model.compile(optimizer=keras.optimizers.RMSprop(1e-3),
             loss='categorical_crossentropy',
             metrics=['acc'])
model.fit(x_train, y_train,
         batch_size=64,
         epochs=1,
         validation_split=0.2)

#model.predict(x_test, batch_size=32)

4.共享网络层

share_embedding = layers.Embedding(1000, 64)

input1 = keras.Input(shape=(None,), dtype='int32')
input2 = keras.Input(shape=(None,), dtype='int32')

feat1 = share_embedding(input1)
feat2 = share_embedding(input2)

5.模型复用

from tensorflow.keras.applications import VGG16
vgg16=VGG16()

feature_list = [layer.output for layer in vgg16.layers]
feat_ext_model = keras.Model(inputs=vgg16.input, outputs=feature_list)

img = np.random.random((1, 224, 224, 3).astype('float32'))
ext_features = feat_ext_model(img)

6.自定义网络层

# import tensorflow as tf
# import tensorflow.keras as keras
class MyDense(layers.Layer):
    def __init__(self, units=32):
        super(MyDense, self).__init__()
        self.units = units
    def build(self, input_shape):
        self.w = self.add_weight(shape=(input_shape[-1], self.units),
                                 initializer='random_normal',
                                 trainable=True)
        self.b = self.add_weight(shape=(self.units,),
                                 initializer='random_normal',
                                 trainable=True)
    def call(self, inputs):
        return tf.matmul(inputs, self.w) + self.b
    
    def get_config(self):
        return {'units': self.units}
    
inputs = keras.Input((4,))
outputs = MyDense(10)(inputs)
model = keras.Model(inputs, outputs)
config = model.get_config()
new_model = keras.Model.from_config(
config, custom_objects={'MyDense':MyDense}
)

# 在自定义网络层调用其他网络层

# 超参
time_step = 10
batch_size = 32
hidden_dim = 32
inputs_dim = 5

# 网络
class MyRnn(layers.Layer):
    def __init__(self):
        super(MyRnn, self).__init__()
        self.hidden_dim = hidden_dim
        self.projection1 = layers.Dense(units=hidden_dim, activation='relu')
        self.projection2 = layers.Dense(units=hidden_dim, activation='relu')
        self.classifier = layers.Dense(1, activation='sigmoid')
    def call(self, inputs):
        outs = []
        states = tf.zeros(shape=[inputs.shape[0], self.hidden_dim])
        for t in range(inputs.shape[1]):
            x = inputs[:,t,:]
            h = self.projection1(x)
            y = h + self.projection2(states)
            states = y
            outs.append(y)
        # print(outs)
        features = tf.stack(outs, axis=1)
        print(features.shape)
        return self.classifier(features)

# 构建网络
inputs = keras.Input(batch_shape=(batch_size, time_step, inputs_dim))
x = layers.Conv1D(32, 3)(inputs)
print(x.shape)
outputs = MyRnn()(x)
model = keras.Model(inputs, outputs)


rnn_model = MyRnn()
_ = rnn_model(tf.zeros((1, 10, 5)))