pytorch:neural network
程序员文章站
2022-07-13 12:59:49
...
一个典型的神经网络的训练过程可以描述如下:
- 定义神经网络(包含一些可以训练的参数);
- 根据输入的数据集进行迭代;
- 通过网络架构处理输入;
- 计算损失函数;
- 传播梯度给网络的参数;
- 更新网络的权重,一般使用weight = weight - learning_rate * gradient
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def num_flat_features(self, x):
size = x.size()[1:]
num_feature = 1
for s in size:
num_feature *= s
return num_feature
net = Net()
print(net)
# 网络模型的参数
params = list(net.parameters())
print(len(params)) # 10
print(params[0].size()) # (6, 1, 5, 5)
input = torch.randn(1, 1, 32, 32)
out = net(input)
print(out)
output = net(input)
target = torch.randn(10)
target = target.view(1, -1)
criterion = nn.MSELoss()
loss = criterion(output, target)
print(loss)
print(loss.grad_fn) # MSELoss
print(loss.grad_fn.next_functions[0][0]) # Linear
print(loss.grad_fn.next_functions[0][0].next_functions[0][0]) # ReLU
整个网络的计算过程为:
input
conv2d relu maxpool2d conv2d relu maxpool2d view linear relu linear relu linear relu linear MSELoss
loss
torch.nn只支持mini-batches的输入,但是不支持单个样本作为输入,对于单样本的时候,可以使用input.unsqueeze(0)来冒充一个batch维度的输入
更新参数:
learning_rate = 0.01
for f in net.parameters():
f.data.sub_(f.grad.data * learning_rate)
优化
import torch.optim as optim
# create your optimizer
optimizer = optim.SGD(net.parameters(), lr=0.01)
# in your training loop:
optimizer.zero_grad() # zero the gradient buffers
output = net(input)
loss = criterion(output, target)
loss.backward()
optimizer.step()
上一篇: Oracle的Flashback用法汇总
下一篇: Oracle数据库物理文件备份/恢复