欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

pytorch nn.functional.dropout的坑

程序员文章站 2022-07-13 11:43:42
...
作者:雷杰
链接:https://www.zhihu.com/question/67209417/answer/302434279
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

刚踩的坑, 差点就哭出来了TT. --- 我明明加了一百个dropout, 为什么结果一点都没变


使用F.dropout ( nn.functional.dropout )的时候需要设置它的training这个状态参数与模型整体的一致.

比如:

Class DropoutFC(nn.Module):
    def __init__(self):
        super(DropoutFC, self).__init__()
        self.fc = nn.Linear(100,20)

    def forward(self, input):
        out = self.fc(input)
        out = F.dropout(out, p=0.5)
        return out

Net = DropoutFC()
Net.train()

# train the Net

这段代码中的F.dropout实际上是没有任何用的, 因为它的training状态一直是默认值False. 由于F.dropout只是相当于引用的一个外部函数, 模型整体的training状态变化也不会引起F.dropout这个函数的training状态发生变化. 所以, 此处的out = F.dropout(out) 就是 out = out. Ref: https://github.com/pytorch/pytorch/blob/master/torch/nn/functional.py#L535


正确的使用方法如下, 将模型整体的training状态参数传入dropout函数

Class DropoutFC(nn.Module):
   def __init__(self):
       super(DropoutFC, self).__init__()
       self.fc = nn.Linear(100,20)

   def forward(self, input):
       out = self.fc(input)
       out = F.dropout(out, p=0.5, training=self.training)
       return out

Net = DropoutFC()
Net.train()

# train the Net


或者直接使用nn.Dropout() (nn.Dropout()实际上是对F.dropout的一个包装, 也将self.training传入了) Ref: https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/dropout.py#L46

Class DropoutFC(nn.Module):
  def __init__(self):
      super(DropoutFC, self).__init__()
      self.fc = nn.Linear(100,20)
      self.dropout = nn.Dropout(p=0.5)

  def forward(self, input):
      out = self.fc(input)
      out = self.dropout(out)
      return out
Net = DropoutFC()
Net.train()

# train the Net