欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

tf.contrib.rnn.LSTMCell 和 tf.nn.rnn_cell.LSTMCell

程序员文章站 2022-07-13 11:38:54
...

tf.contrib.rnn.LSTMCell 和 tf.nn.rnn_cell.LSTMCell 两个是一样的

tf.nn.rnn_cell_LSTMCell()


__init__(
    num_units,
    use_peepholes=False,
    cell_clip=None,
    initializer=None,
    num_proj=None,
    proj_clip=None,
    num_unit_shards=None,
    num_proj_shards=None,
    forget_bias=1.0,
    state_is_tuple=True,
    activation=None,
    reuse=None,
    name=None,
    dtype=None,
    **kwargs
)
'''
Args:
		num_units: int, The number of units in the LSTM cell.
		use_peepholes: bool, set True to enable diagonal/peephole connections.
		cell_clip: (optional) A float value, if provided the cell state is clipped by this value prior to the cell output activation.
		initializer: (optional) The initializer to use for the weight and projection matrices.
		num_proj: (optional) int, The output dimensionality for the projection matrices. If None, no projection is performed.
		proj_clip: (optional) A float value. If num_proj > 0 and proj_clip is provided, then the projected values are clipped elementwise to within [-proj_clip, proj_clip].
		num_unit_shards: Deprecated, will be removed by Jan. 2017. Use a variable_scope partitioner instead.
		num_proj_shards: Deprecated, will be removed by Jan. 2017. Use a variable_scope partitioner instead.
		forget_bias: Biases of the forget gate are initialized by default to 1 in order to reduce the scale of forgetting at the beginning of the training. Must set it manually to 0.0 when restoring from CudnnLSTM trained checkpoints.
		state_is_tuple: If True, accepted and returned states are 2-tuples of the c_state and m_state. If False, they are concatenated along the column axis. This latter behavior will soon be deprecated.
		activation: Activation function of the inner states. Default: tanh. It could also be string that is within Keras activation function names.
		reuse: (optional) Python boolean describing whether to reuse variables in an existing scope. If not True, and the existing scope already has the given variables, an error is raised.
		name: String, the name of the layer. Layers with the same name will share weights, but to avoid mistakes we require reuse=True in such cases.
		dtype: Default dtype of the layer (default of None means use the type of the first input). Required when build is called before call.
		**kwargs: Dict, keyword named properties for common layer attributes, like trainable etc when constructing the cell from configs of get_config().
		
		When restoring from CudnnLSTM-trained checkpoints, use CudnnCompatibleLSTMCell instead.

'''

简单介绍 和主要参数说明

这个API是一个python class,使用参数初始化后,返回一个LSTM cell instance(Long short-term memory unit (LSTM)

num_units: int, The number of units in the LSTM cell 网络的“宽度”
cell_clip:(可选) 一个float类型的值,通常是5.0,如果提供,则在单元输出到**函数之前通过该值剪辑单元状态。
initializer: (可选)用于权重参数的初始化器。tf.initializer.XXX
num_proj: (可选)一个int型的数值,投影矩阵的输出维数。如果没有,则不执行投影。(就是我们平时在rnn输出上加一个全连接网络,这里就是那个全连接网络的维度)
state_is_tuple:默认为True,接受状态和返回状态是(c_state,m_state)元组。如果为False,则沿列轴连接它们,只返回一个concate([c_state,m_state],axis=-1)