欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

inverted dropout示例

程序员文章站 2022-07-13 11:35:42
...


这里是完成的吴恩达的深度学习课程作业中的一个inverted dropout的作业题,是一种很流行的正则化方式。这里做一个记录,重点记录了如何实现前向和后向的inverted dropout,都是代码片段,无法运行;完整的代码请参见吴恩达的第二课的第一周的作业。

1、前向传播

def forward_propagation_with_dropout(X, parameters, keep_prob = 0.5):
    """
    Implements the forward propagation: 
    LINEAR -> RELU + DROPOUT -> 
    LINEAR -> RELU + DROPOUT -> LINEAR -> SIGMOID.
    Arguments:
    X -- input dataset, of shape (2, number of examples)
    parameters -- python dictionary containing your parameters
    "W1", "b1", "W2", "b2", "W3", "b3":
        W1 -- weight matrix of shape (20, 2)
        b1 -- bias vector of shape (20, 1)
        W2 -- weight matrix of shape (3, 20)
        b2 -- bias vector of shape (3, 1)
        W3 -- weight matrix of shape (1, 3)
        b3 -- bias vector of shape (1, 1)
    keep_prob - probability of keeping a neuron active during drop-out,
    scalar
    Returns:
    A3 -- last activation value, output of the forward propagation,
    of shape (1,1)
    cache -- tuple, information stored for computing the backward propagation
    """
    
    np.random.seed(1)
    
    # retrieve parameters
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]
    
    # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    Z1 = np.dot(W1, X) + b1
    A1 = relu(Z1)
    ### START CODE HERE ### (approx. 4 lines)         
    # Steps 1-4 below correspond to the Steps 1-4 described above. 
    # Step 1: initialize matrix D1 = np.random.rand(..., ...)
    D1 = np.random.rand(A1.shape[0], A1.shape[1])
    # Step 2: convert entries of D1 to 0 or 1 
    # (using keep_prob as the threshold)
    D1 = D1 < keep_prob
    # Step 3: shut down some neurons of A1
    A1 = A1 * D1
    # Step 4: scale the value of neurons that haven't been shut down
    A1 = A1 / keep_prob
    ### END CODE HERE ###
    Z2 = np.dot(W2, A1) + b2
    A2 = relu(Z2)
    ### START CODE HERE ### (approx. 4 lines)
    # Step 1: initialize matrix D2 = np.random.rand(..., ...)
    D2 = np.random.rand(A2.shape[0], A2.shape[1])
    # Step 2: convert entries of D2 to 0 or 1 
    # (using keep_prob as the threshold)
    D2 = D2 < keep_prob
    # Step 3: shut down some neurons of A2
    A2 = A2 * D2
    # Step 4: scale the value of neurons that haven't been shut down
    A2 = A2 / keep_prob
    ### END CODE HERE ###
    Z3 = np.dot(W3, A2) + b3
    A3 = sigmoid(Z3)
    cache = (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3)
    return A3, cache

2、后向传播

def backward_propagation_with_dropout(X, Y, cache, keep_prob):
    """
    Implements the backward propagation of our 
    baseline model to which we added dropout.
    
    Arguments:
    X -- input dataset, of shape (2, number of examples)
    Y -- "true" labels vector, of shape (output size, number of examples)
    cache -- cache output from forward_propagation_with_dropout()
    keep_prob - probability of keeping a neuron
    active during drop-out, scalar
    
    Returns:
    gradients -- A dictionary with the gradients with respect
    to each parameter, activation and pre-activation variables
    """
    
    m = X.shape[1]
    (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3) = cache
    
    dZ3 = A3 - Y
    dW3 = 1./m * np.dot(dZ3, A2.T)
    db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True)
    dA2 = np.dot(W3.T, dZ3)
    ### START CODE HERE ### (≈ 2 lines of code)
    # Step 1: Apply mask D2 to shut down the
    # same neurons as during the forward propagation
    dA2 = dA2 * D2
    # Step 2: Scale the value of neurons that haven't been shut down
    dA2 = dA2 / keep_prob    
    ### END CODE HERE ###
    dZ2 = np.multiply(dA2, np.int64(A2 > 0))
    dW2 = 1./m * np.dot(dZ2, A1.T)
    db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True)
    
    dA1 = np.dot(W2.T, dZ2)
    ### START CODE HERE ### (≈ 2 lines of code)
    # Step 1: Apply mask D1 to shut down the
    # same neurons as during the forward propagation
    dA1 = dA1 * D1
    # Step 2: Scale the value of neurons that haven't been shut down
    dA1 = dA1 / keep_prob    
    ### END CODE HERE ###
    dZ1 = np.multiply(dA1, np.int64(A1 > 0))
    dW1 = 1./m * np.dot(dZ1, X.T)
    db1 = 1./m * np.sum(dZ1, axis=1, keepdims = True)
    
    gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,"dA2": dA2,
                 "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1, 
                 "dZ1": dZ1, "dW1": dW1, "db1": db1}
    
    return gradients