dropout解决overfitting问题
程序员文章站
2022-07-13 11:27:49
...
import tensorflow as tf
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
#from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import LabelBinarizer
#load data
digits = load_digits()
X = digits.data
y = digits.target
y = LabelBinarizer().fit_transform(y)
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=.3)
#定义层,add_layer(输入数据,输入数据维数,输出数据维数,激励函数)
def add_layer(inputs,in_size,out_size,layer_name,activate_function=None):
Weights = tf.Variable(tf.random_normal([in_size,out_size]))
bias = tf.Variable(tf.zeros([1,out_size])+0.1)
Wx_plus_b = tf.add(tf.matmul(inputs,Weights),bias)
Wx_plus_b = tf.nn.dropout(Wx_plus_b,keep_prob)
if activate_function is None:
outputs = Wx_plus_b
else:
outputs = activate_function(Wx_plus_b)
#tf.histogram_summary(layer_name + '/outputs',outputs)
return outputs
#define placeholder for inputs to network
keep_prob = tf.placeholder(tf.float32)
xs = tf.placeholder(tf.float32, [None, 64])
ys = tf.placeholder(tf.float32, [None, 10])
#add output layer
l1 = add_layer(xs,64,50,'l1',activate_function = tf.nn.tanh)
prediction = add_layer(l1,50,10,'l2',activate_function = tf.nn.softmax)
#the error between prediction and real data
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),reduction_indices=[1])) #loss
tf.summary.scalar('loss',cross_entropy)
train_step = tf.train.GradientDescentOptimizer(0.6).minimize(cross_entropy)
sess= tf.Session()
merged = tf.summary.merge_all()
#summary writer goes in here
train_writer = tf.summary.FileWriter('logs/train',sess.graph)
test_writer = tf.summary.FileWriter('logs/test',sess.graph)
sess.run(tf.global_variables_initializer())
for i in range(500):
sess.run(train_step,feed_dict={xs:X_train,ys:y_train,keep_prob:0.5})
if i%50 == 0:
#record loss
train_result = sess.run(merged,feed_dict = {xs:X_train,ys:y_train,keep_prob:1})
test_result = sess.run(merged,feed_dict = {xs:X_test,ys:y_test,keep_prob:1})
train_writer.add_summary(train_result,i)
test_writer.add_summary(test_result,i)