欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

k-近邻算法

程序员文章站 2022-07-13 11:28:25
...

基于python3实现的《机器学习实战》ch2 k-邻近算法

1.kNN算法伪代码如下:

对未知类别属性的数据集中的每个点依次执行以下操作:
1)计算已知类别数据集中的点与当前点之间的距离;
2)按照距离递增次序排序;
3)选取与当前点距离最近的k个点;
4)确定前k个点所在类别的出现频率;
5)返回前k个点出现频率最高的类别作为当前点的预测分类。

2.程序2-1 k邻近算法
def classify0(inX, dataSet, labels, k):
    dataSetSize = dataSet.shape[0]
    #采用欧式距离公式计算距离
    diffMat = tile(inX, (dataSetSize,1)) - dataSet
    sqDiffMat = diffMat**2
    sqDistances = sqDiffMat.sum(axis=1)
    distances = sqDistances**0.5
    
    sortedDistIndicies = distances.argsort()     
    classCount={} 
    
    #统计当前点与已知数据集距离最近的k个点的类别         
    for i in range(k):
        voteIlabel = labels[sortedDistIndicies[i]]
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]

上面的代码是基于python2,在python3下运行会出现以下错误:
AttributeError: ‘dict’ object has no attribute 'iteritems’
将代码中的classCount.iteritems()改为classCount.items()即可

3.使用kNN改进约会网站的配对结果

数据集下载链接:链接: https://pan.baidu.com/s/1WcOfYaC_lNSpOHU-NyQ-mA 提取码: kiwj
数据集共有1000行,前3列分别表示:每年获得的飞行常客里程数、玩视频游戏所消耗的时间百分比、每周消耗的冰淇淋公升数,最后一列表示所属的类别,其中1表示:‘not at all’, 2表示:‘in small doses’, 3表示:‘in large doses’

#程序2-2 将文本记录转换为Numpy的解析程序 
def file2matrix(filename):
    fr = open(filename)
    arrayOlines = fr.readlines()
    numberOfLines = len(arrayOlines)
    returnMat = zeros((numberOfLines,3))
    classLabelVector = []
    index = 0
    for line in arrayOlines:
        line = line.strip() #截掉回车字符
        listFromLine = line.split('\t')
        returnMat[index, :] = listFromLine[0:3]
        classLabelVector.append(int(listFromLine[-1]))
        index += 1
    return returnMat,classLabelVector
  
#特征归一化
def autoNorm(dataSet):
    minVals = dataSet.min(0)
    maxVals = dataSet.max(0)
    ranges = maxVals - minVals
    normDataSet = zeros(shape(dataSet))
    m = dataSet.shape[0]
    normDataSet = dataSet - tile(minVals, (m,1))
    normDataSet = normDataSet / tile(ranges,(m,1))
    return normDataSet, ranges, minVals

#测试代码
def datingClassTest():
    hoRatio = 0.50
    datingDataMat, datingLabels = file2matrix("datingTestSet2.txt")
    normMat, ranges, minVals = autoNorm(datingDataMat)
    m = normMat.shape[0]
    numTestVecs = int(m * hoRatio)
    errorCount = 0.0
    for i in range(numTestVecs):
        classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m], 3)
        print("the classifier came back with: %d, the real answer is: %d" % (classifierResult, datingLabels[i]))
        if (classifierResult != datingLabels[i]): errorCount += 1.0
    print("the total error rate is: %f" % (errorCount / float(numTestVecs)))
 
#约会网站的预测函数       
def classifyPerson():
    resultList = ['not at all', 'in small doses', 'in large doses']
    percentTats = float(input("percentage of time spent playing video games?"))
    ffMiles = float(input("frequent flier miles earned per year?"))
    iceCram = float(input("liters of ice cream consumed per year?"))
    datingDataMat, datingLabels = file2matrix("datingTestSet2.txt")
    normMat, ranges, minVals = autoNorm(datingDataMat)
    inArr = array([ffMiles, percentTats, iceCram])
    classifierResult = classify0((inArr - minVals) / ranges, normMat, datingLabels, 3)
    print("You will probably like this person:", resultList[classifierResult - 1])
    
4.手写识别系统

数据集:链接: https://pan.baidu.com/s/1D_lzQV-0bg1suq_oCnMk-g 提取码: jdgj
数据集中的文件名如0_75.txt,1_47.txt等,其中_之前表示该数据表示的数字。

#图像转向量
def img2vector(filename):
    returnVect = zeros((1,1024))
    fr = open(filename)
    for i in range(32):
        lineStr = fr.readline()
        for j in range(32):
            returnVect[0, 32 * i + j] = int(lineStr[j])
    return returnVect

def handWritingClassTest():
    hwLabels = []
    trainingFileList = listdir('trainingDigits')
    m = len(trainingFileList)
    trainingMat = zeros((m,1024))
    for i in range(m):
        fileNameStr = trainingFileList[i]
        fileStr = fileNameStr.split('.')[0]
        classNumStr = int(fileStr.split('_')[0]) #从文件名中解析其所属的分类
        hwLabels.append(classNumStr)
        trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)
        
    testFileList = listdir('testDigits')
    errorCount = 0.0
    mTest = len(testFileList)
    for i in range(mTest):
        fileNameStr = testFileList[i]
        fileStr = fileNameStr.split('.')[0]
        classNumStr = int(fileStr.split('_')[0])
        vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
        classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
        print("the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr))
        if(classifierResult != classNumStr): errorCount += 1.0
    print("\nthe total number of error is: %d" % errorCount)
    print("\nthe total error rate is: %f" % (errorCount / float(mTest)))
相关标签: kNN python3