k-近邻算法
程序员文章站
2022-07-13 11:28:25
...
基于python3实现的《机器学习实战》ch2 k-邻近算法
1.kNN算法伪代码如下:
对未知类别属性的数据集中的每个点依次执行以下操作:
1)计算已知类别数据集中的点与当前点之间的距离;
2)按照距离递增次序排序;
3)选取与当前点距离最近的k个点;
4)确定前k个点所在类别的出现频率;
5)返回前k个点出现频率最高的类别作为当前点的预测分类。
2.程序2-1 k邻近算法
def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
#采用欧式距离公式计算距离
diffMat = tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort()
classCount={}
#统计当前点与已知数据集距离最近的k个点的类别
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
上面的代码是基于python2,在python3下运行会出现以下错误:
AttributeError: ‘dict’ object has no attribute 'iteritems’
将代码中的classCount.iteritems()改为classCount.items()即可
3.使用kNN改进约会网站的配对结果
数据集下载链接:链接: https://pan.baidu.com/s/1WcOfYaC_lNSpOHU-NyQ-mA 提取码: kiwj
数据集共有1000行,前3列分别表示:每年获得的飞行常客里程数、玩视频游戏所消耗的时间百分比、每周消耗的冰淇淋公升数,最后一列表示所属的类别,其中1表示:‘not at all’, 2表示:‘in small doses’, 3表示:‘in large doses’
#程序2-2 将文本记录转换为Numpy的解析程序
def file2matrix(filename):
fr = open(filename)
arrayOlines = fr.readlines()
numberOfLines = len(arrayOlines)
returnMat = zeros((numberOfLines,3))
classLabelVector = []
index = 0
for line in arrayOlines:
line = line.strip() #截掉回车字符
listFromLine = line.split('\t')
returnMat[index, :] = listFromLine[0:3]
classLabelVector.append(int(listFromLine[-1]))
index += 1
return returnMat,classLabelVector
#特征归一化
def autoNorm(dataSet):
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
ranges = maxVals - minVals
normDataSet = zeros(shape(dataSet))
m = dataSet.shape[0]
normDataSet = dataSet - tile(minVals, (m,1))
normDataSet = normDataSet / tile(ranges,(m,1))
return normDataSet, ranges, minVals
#测试代码
def datingClassTest():
hoRatio = 0.50
datingDataMat, datingLabels = file2matrix("datingTestSet2.txt")
normMat, ranges, minVals = autoNorm(datingDataMat)
m = normMat.shape[0]
numTestVecs = int(m * hoRatio)
errorCount = 0.0
for i in range(numTestVecs):
classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m], 3)
print("the classifier came back with: %d, the real answer is: %d" % (classifierResult, datingLabels[i]))
if (classifierResult != datingLabels[i]): errorCount += 1.0
print("the total error rate is: %f" % (errorCount / float(numTestVecs)))
#约会网站的预测函数
def classifyPerson():
resultList = ['not at all', 'in small doses', 'in large doses']
percentTats = float(input("percentage of time spent playing video games?"))
ffMiles = float(input("frequent flier miles earned per year?"))
iceCram = float(input("liters of ice cream consumed per year?"))
datingDataMat, datingLabels = file2matrix("datingTestSet2.txt")
normMat, ranges, minVals = autoNorm(datingDataMat)
inArr = array([ffMiles, percentTats, iceCram])
classifierResult = classify0((inArr - minVals) / ranges, normMat, datingLabels, 3)
print("You will probably like this person:", resultList[classifierResult - 1])
4.手写识别系统
数据集:链接: https://pan.baidu.com/s/1D_lzQV-0bg1suq_oCnMk-g 提取码: jdgj
数据集中的文件名如0_75.txt,1_47.txt等,其中_之前表示该数据表示的数字。
#图像转向量
def img2vector(filename):
returnVect = zeros((1,1024))
fr = open(filename)
for i in range(32):
lineStr = fr.readline()
for j in range(32):
returnVect[0, 32 * i + j] = int(lineStr[j])
return returnVect
def handWritingClassTest():
hwLabels = []
trainingFileList = listdir('trainingDigits')
m = len(trainingFileList)
trainingMat = zeros((m,1024))
for i in range(m):
fileNameStr = trainingFileList[i]
fileStr = fileNameStr.split('.')[0]
classNumStr = int(fileStr.split('_')[0]) #从文件名中解析其所属的分类
hwLabels.append(classNumStr)
trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)
testFileList = listdir('testDigits')
errorCount = 0.0
mTest = len(testFileList)
for i in range(mTest):
fileNameStr = testFileList[i]
fileStr = fileNameStr.split('.')[0]
classNumStr = int(fileStr.split('_')[0])
vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
print("the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr))
if(classifierResult != classNumStr): errorCount += 1.0
print("\nthe total number of error is: %d" % errorCount)
print("\nthe total error rate is: %f" % (errorCount / float(mTest)))
上一篇: K近邻算法小结
下一篇: 用java实现的一个简单的web服务器