view_init(elev,azim)函数的使用
程序员文章站
2022-07-13 10:46:04
...
转换视角进行观察,通过设置view_init(elev,azim)两个参数变化时,观察图像的变化
# #############################################################################
# Compute clustering
print("Compute unstructured hierarchical clustering...")
st = time.time()
# 指定分成的簇的个数为6
n_clusters=6
ward = AgglomerativeClustering(n_clusters=n_clusters, linkage='ward').fit(X)
elapsed_time = time.time() - st
label = ward.labels_
print("unstructured hierarchical clusters:: %i" % n_clusters)
print("Elapsed time: %.2fs" % elapsed_time)
print("Number of points: %i" % label.size)
# #############################################################################
# Plot result
fig = plt.figure(figsize=(14, 14))
ax = p3.Axes3D(fig)
ax.view_init(7, -80)
for l in np.unique(label):
ax.scatter(X[label == l, 0], X[label == l, 1], X[label == l, 2],
color=plt.cm.jet(np.float(l) / np.max(label + 1)),
s=24, edgecolor='k')
plt.title('Without connectivity constraints (time %.2fs)' % elapsed_time)
# #############################################################################
# Define the structure A of the data. Here a 10 nearest neighbors
from sklearn.neighbors import kneighbors_graph
connectivity = kneighbors_graph(X, n_neighbors=10, include_self=False)
# #############################################################################
# Compute clustering
print("Compute structured hierarchical clustering...")
st = time.time()
ward = AgglomerativeClustering(n_clusters=n_clusters, connectivity=connectivity,
linkage='ward').fit(X)
elapsed_time = time.time() - st
label = ward.labels_
print("structured hierarchical clusters: %i" % n_clusters)
print("Elapsed time: %.2fs" % elapsed_time)
print("Number of points: %i" % label.size)
# #############################################################################
# Plot result
fig = plt.figure(figsize=(14, 14))
ax = p3.Axes3D(fig)
ax.view_init(7, -80)
for l in np.unique(label):
ax.scatter(X[label == l, 0], X[label == l, 1], X[label == l, 2],
color=plt.cm.jet(float(l) / np.max(label + 1)),
s=24, edgecolor='k')
plt.title('With connectivity constraints (time %.2fs)' % elapsed_time)
plt.show()
将角度设置为45,0,再次进行观察
ax.view_init(45, 0)
ax.view_init(45, 45)