mnn python 笔记
问题:
暂时发现mnn有两层同时处理一个x,第一层的结果会很小或者为nan,原因未知。
以下参考:https://blog.csdn.net/qq_38109843/article/details/107083111
中文文档
MNN安装
MNN源码:https://github.com/alibaba/MNN/tree/master/tools/converter
先安装3.0以上版本的protobuf,再安装,基本无坑。
简单测试:
./backendTest.out ../benchmark/models/mobilenet-v1-1.0.mnn 10 0
./MNNConvert -h
模型转换
tensorflow:
./MNNConvert -f TF/ONNX/TFLITE --modelFile XXX.pb/XXX.onnx/XXX.tflite --MNNModel XXX.XX --bizCode XXX
- caffe:
./MNNConvert -f CAFFE --modelFile XXX.caffemodel --prototxt XXX.prototxt --MNNModel XXX.XX --bizCode XXX
- pytorch:
import torch
import torchvision
dummy_input = torch.randn(10, 3, 224, 224, device='cuda')
model = torchvision.models.alexnet(pretrained=True).cuda()
input_names = [ "actual_input_1" ] + [ "learned_%d" % i for i in range(16) ]
output_names = [ "output1" ]
torch.onnx.export(model, dummy_input, "alexnet.onnx", verbose=True, input_names=input_names, output_names=output_names, do_constant_folding=True)
./MNNConvert -f ONNX --modelFile alexnet.onnx --MNNModel alexnet.mnn --bizCode MNN
- 推理示例代码
# Copyright @ 2019 Alibaba. All rights reserved.
# Created by ruhuan on 2019.09.09
""" python demo usage about MNN API """
from __future__ import print_function
import numpy as np
import MNN
import cv2
def inference():
""" inference mobilenet_v1 using a specific picture """
interpreter = MNN.Interpreter("mobilenet_v1.mnn")
session = interpreter.createSession()
input_tensor = interpreter.getSessionInput(session)
image = cv2.imread('ILSVRC2012_val_00049999.JPEG')
#cv2.imshow("image",image)
#cv2.waitKey(0)
#cv2 read as bgr format
image = image[..., ::-1]
#change to rgb format
image = cv2.resize(image, (224, 224))
#resize to mobile_net tensor size
image = image.astype(float)
image = image - (103.94, 116.78, 123.68)
image = image * (0.017, 0.017, 0.017)
#preprocess it
image = image.transpose((2, 0, 1))
#cv2 read shape is NHWC, Tensor's need is NCHW,transpose it
tmp_input = MNN.Tensor((1, 3, 224, 224), MNN.Halide_Type_Float,\
image, MNN.Tensor_DimensionType_Caffe)
#construct tensor from np.ndarray
input_tensor.copyFrom(tmp_input)
interpreter.runSession(session)
output_tensor = interpreter.getSessionOutput(session)
print("expect 983")
print("output belong to class: {}".format(np.argmax(output_tensor.getData())))
if __name__ == "__main__":
inference()
MNN中NC4HW4格式
https://www.zhihu.com/question/337513515
FlatBuffer
https://www.jianshu.com/p/8eb153c12a4b
借图一用,侵删。
flatbuffer数据结构
mnn模型
存储结构
https://www.jianshu.com/p/b1fa70005dbf
MNN量化源码解析
https://zhuanlan.zhihu.com/p/153562409?from_voters_page=true
参考上文写了更详细的:
https://blog.csdn.net/qq_38109843/article/details/107181824
MNN模型转换流程
主流程:https://zhuanlan.zhihu.com/p/124295758
算子转换:https://zhuanlan.zhihu.com/p/124304103
MNN推理过程
https://zhuanlan.zhihu.com/p/136809881
MNN CPU backend
https://zhuanlan.zhihu.com/p/136813972
MNN推理优化
1.https://zhuanlan.zhihu.com/p/136801718
2.https://zhuanlan.zhihu.com/p/136806154
3.https://zhuanlan.zhihu.com/p/136807941
MNN模型定制化转换
https://www.jianshu.com/p/df1868aef2c3
官方文档:https://www.yuque.com/mnn/cn/customize_op
MNN实战YOLOV3部署
https://github.com/wlguan/MNN-yolov3