欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

防止过拟合-Dropout2d

程序员文章站 2022-07-13 09:58:33
...
Dropout的过程
1)按照概率p,对每个输入channel进行伯努利采样,随机采样到的channel置为0,输出
2)将1)的输出结果乘以1/(1-p)就是做了dropout的结果

代码验证:

#%%
import torch
import torch.nn as nn

#%% 模型
conv1 = nn.Conv2d(2,2,kernel_size=3,stride=1,padding=0)
m = nn.Dropout2d(p=0.4)

#%% 数据准备
N = 2
C = 2
H = 4
W = 4
input = torch.arange(N*C*H*W,dtype=torch.float32).view([N,C,H,W])

'''
1)按照概率p,对每个输入channel进行伯努利采样,随机采样到的channel置为0,输出
2)将1)的输出结果乘以1/(1-p)就是做了dropout的结果
'''

#%% 预测 没有做dropout
m.eval()
conv1_out = conv1(input)
dropout_out =  m(conv1_out)
# print('conv1:',conv1_out)
print('没有做dropout:',dropout_out)


#%% 训练
m.train()
conv1_out = conv1(input)
dropout_out =  m(conv1_out)

# print('conv1:',conv1_out)
print('做了dropout:',dropout_out)

结果:

没有做dropout: tensor([[[[-10.0299, -10.0603],
          [-10.1516, -10.1820]],

         [[  5.0803,   5.3178],
          [  6.0304,   6.2679]]],


        [[[-11.0039, -11.0343],
          [-11.1256, -11.1560]],

         [[ 12.6810,  12.9185],
          [ 13.6311,  13.8686]]]], grad_fn=<ThnnConv2DBackward>)
做了dropout: tensor([[[[-16.7164, -16.7672],
          [-16.9193, -16.9701]],

         [[  8.4672,   8.8631],
          [ 10.0507,  10.4465]]],


        [[[-18.3398, -18.3905],
          [-18.5427, -18.5934]],

         [[  0.0000,   0.0000],
          [  0.0000,   0.0000]]]], grad_fn=<MulBackward0>)