欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Python 实战 Matplotlib 作业

程序员文章站 2022-07-13 08:27:08
...

题目

Exercise 11.1: Plotting a function
Plot the function
f(x) = sin2(x �� 2)e��x2
over the interval [0; 2]. Add proper axis labels, a title, etc.
Exercise 11.2: Data
Create a data matrix X with 20 observations of 10 variables. Generate a vector b with parameters Then
generate the response vector y = Xb+z where z is a vector with standard normally distributed variables.
Now (by only using y and X), nd an estimator for b, by solving
^b
= arg min
b
kXb �� yk2
Plot the true parameters b and estimated parameters ^b
. See Figure 1 for an example plot.
Exercise 11.3: Histogram and density estimation
Generate a vector z of 10000 observations from your favorite exotic distribution. Then make a plot that
shows a histogram of z (with 25 bins), along with an estimate for the density, using a Gaussian kernel
density estimator (see scipy.stats). See Figure 2 for an example plot.

Python 实战 Matplotlib 作业

解答

# -*- coding: utf-8 -*-

""" #1 """
import numpy as np  
import matplotlib.pyplot as plt   
from scipy import stats 

X = np.linspace(0, 2, 1000) 
Y = (np.sin(X-2) ** 2) * (np.exp(-X**2))  

plt.plot(X, Y)  
plt.xlabel('x')  
plt.ylabel('f(x)')  
plt.title(' ###1 ')  
plt.show()

""" #2 """
x = np.random.rand(20, 10)  
b = np.random.rand(10, 1)  
z = np.random.randn(20,1)  
y = np.dot(x,b) + z  

b_estimate = np.linalg.lstsq(x, y)[0]  

est  = plt.scatter(np.linspace(0, 10, 10), b_estimate, color = 'b', marker='o')  
true = plt.scatter(np.linspace(0, 10, 10), b, color = 'r', marker='x')  
plt.legend((true,est), ('True coef', 'Estimated coef'), \
           loc='upper center') 
plt.show()

""" #3 """
bins = 25
size = 10000

z = np.random.normal(size=size)

x_grid = np.linspace(np.min(z), np.max(z), 1000)  

plt.hist(z, bins, normed= True, facecolor='b', alpha=0.75)  

plt.plot(x_grid,  stats.gaussian_kde(z).pdf(x_grid))  
plt.grid(True)  
plt.show()  

结果

Python 实战 Matplotlib 作业

回顾

总之就是各种找符合要求的函数。python的易调用性挺强的。

相关标签: Python作业