Python批量下载Landsat-8数据
程序员文章站
2022-07-12 23:52:21
...
参考国外的一篇文章:Automated Bulk Downloads of Landsat-8 Data Products in Python,略作修改,从亚马逊批量下载Landsat-8。
1. 获取研究区域内Landsat-8的条带号
LANDSAT_PATH = './data/external/Landsat8' #文件存放路径
wrs_path = './data/external/Landsat8/wrs2/WRS2_descending.shp' #WRS2文件
bounds_path = './data/processed/research_area.shp' #研究区shp文件
bounds = gpd.GeoDataFrame.from_file(bounds_path)
wrs = gpd.GeoDataFrame.from_file(wrs_path)
wrs_intersection = wrs[wrs.intersects(bounds.geometry[0])]
paths,rows = wrs_intersection['PATH'].values,wrs_intersection['ROW'].values
for i, (path, row) in enumerate(zip(paths, rows)):
print('Image', i+1, ' - path:', path, 'row:', row)
2. 根据条带号获取文件信息
从亚马逊提供的检索目录获取所需要的文件信息。筛选条件是云量小于某一值,_T2 & _RT文件需要定标和预处理,同样排除。
def get_bulk_list(path,row):
#Checking Available Images on Amazon S3 & Google Storage
s3_scenes = pd.read_csv('./data/external/scene_list')
# Empty list to add the images
bulk_list = []
print('Path:',path, 'Row:', row)
# Filter the Landsat Amazon S3 table for images matching path, row, cloudcover and processing state.
scenes = s3_scenes[(s3_scenes.path == path) & (s3_scenes.row == row) &
(s3_scenes.cloudCover <= CLOUD_MAX) &
(~s3_scenes.productId.str.contains('_T2')) &
(~s3_scenes.productId.str.contains('_RT'))]
print(' Found {} images\n'.format(len(scenes)))
return scenes
3. 保存下载链接
先获取下载链接,并以json格式保存到本地文件,之后再下载。
def get_urls(row):
import requests
from bs4 import BeautifulSoup
url_list = []
print('\n', 'EntityId:', row.productId, '\n')
print(' Checking content: ', '\n')
response = requests.get(row.download_url)
# If the response status code is fine (200)
if response.status_code == 200:
# Import the html to beautiful soup
html = BeautifulSoup(response.content, 'html.parser')
# Second loop: for each band of this image that we find using the html <li> tag
for li in html.find_all('li'):
# Get the href tag
file = li.find_next('a').get('href')
url = row.download_url.replace('index.html', file)
url_list.append(url)
return url_list
if __name__=='__main__':
bulk_frame = get_bulk_list(118,39)
#print(bulk_frame)
down_url={}
for i, row in bulk_frame.iterrows():
EntityID = row.productId
# Print some the product ID
print('\n', 'EntityId:', row.productId, '\n')
down_url[EntityID] = get_urls(row)
with open('11839.txt','w') as f:
f.write(str(down_url))
4. 下载
从json中读取下载链接,下载。每一景影响保存到单独的文件夹下。
import wget,os
file_path = './11839/11839.txt' #下载链接
base_path = os.path.dirname(os.path.abspath(file_path))
with open(file_path,'r') as f:
file = f.read()
file_list = eval(file) #str转dict
for key in file_list.keys():
entity_dir = os.path.join(base_path, key)
os.makedirs(entity_dir, exist_ok=True) #生成目录
os.chdir(entity_dir) #转到目录下
#print(os.getcwd())
value = file_list[key] #文件下载链接
for url in value:
name = url.split('/')[-1] #文件名
if os.path.exists(name): #检查是否存在
print('\nDownloaded: ',name)
continue
print('\nDownloading: ',name) #下载
try: #若下载失败,则跳过(应该加一个日志文件)
wget.download(url)
except:
continue
上一篇: 使用bat批量转换文件名