欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Python批量下载Landsat-8数据

程序员文章站 2022-07-12 23:52:21
...

参考国外的一篇文章:Automated Bulk Downloads of Landsat-8 Data Products in Python,略作修改,从亚马逊批量下载Landsat-8。

1. 获取研究区域内Landsat-8的条带号

LANDSAT_PATH = './data/external/Landsat8' #文件存放路径
wrs_path = './data/external/Landsat8/wrs2/WRS2_descending.shp' #WRS2文件
bounds_path = './data/processed/research_area.shp' #研究区shp文件
bounds = gpd.GeoDataFrame.from_file(bounds_path)
wrs = gpd.GeoDataFrame.from_file(wrs_path)
wrs_intersection = wrs[wrs.intersects(bounds.geometry[0])]
paths,rows = wrs_intersection['PATH'].values,wrs_intersection['ROW'].values
for i, (path, row) in enumerate(zip(paths, rows)):
    print('Image', i+1, ' - path:', path, 'row:', row)

2. 根据条带号获取文件信息

亚马逊提供的检索目录获取所需要的文件信息。筛选条件是云量小于某一值,_T2 & _RT文件需要定标和预处理,同样排除。

def get_bulk_list(path,row):
    #Checking Available Images on Amazon S3 & Google Storage
    s3_scenes = pd.read_csv('./data/external/scene_list')
    # Empty list to add the images
    bulk_list = []
    print('Path:',path, 'Row:', row)
    # Filter the Landsat Amazon S3 table for images matching path, row, cloudcover and processing state.
    scenes = s3_scenes[(s3_scenes.path == path) & (s3_scenes.row == row) & 
                       (s3_scenes.cloudCover <= CLOUD_MAX) & 
                       (~s3_scenes.productId.str.contains('_T2')) &
                       (~s3_scenes.productId.str.contains('_RT'))]
    print(' Found {} images\n'.format(len(scenes)))
    return scenes

3. 保存下载链接

先获取下载链接,并以json格式保存到本地文件,之后再下载。

def get_urls(row):
    import requests
    from bs4 import BeautifulSoup
    url_list = []    
    print('\n', 'EntityId:', row.productId, '\n')
    print(' Checking content: ', '\n')
    response = requests.get(row.download_url)
    # If the response status code is fine (200)
    if response.status_code == 200:
        # Import the html to beautiful soup
        html = BeautifulSoup(response.content, 'html.parser')
        # Second loop: for each band of this image that we find using the html <li> tag
        for li in html.find_all('li'):
            # Get the href tag
            file = li.find_next('a').get('href')
            url = row.download_url.replace('index.html', file)
            url_list.append(url)
    return url_list
    

    
if __name__=='__main__':
    bulk_frame = get_bulk_list(118,39)
    #print(bulk_frame)
    down_url={}
    for i, row in bulk_frame.iterrows():
        EntityID = row.productId       
        # Print some the product ID
        print('\n', 'EntityId:', row.productId, '\n')
        down_url[EntityID] = get_urls(row)
    with open('11839.txt','w') as f:
        f.write(str(down_url))

4. 下载

从json中读取下载链接,下载。每一景影响保存到单独的文件夹下。

import wget,os

file_path = './11839/11839.txt' #下载链接
base_path = os.path.dirname(os.path.abspath(file_path))
with open(file_path,'r') as f:
    file = f.read()
file_list = eval(file) #str转dict
for key in file_list.keys():
    entity_dir = os.path.join(base_path, key)  
    os.makedirs(entity_dir, exist_ok=True) #生成目录
    os.chdir(entity_dir)  #转到目录下
    #print(os.getcwd())
    value = file_list[key] #文件下载链接
    for url in value:
        name = url.split('/')[-1]   #文件名      
        if os.path.exists(name): #检查是否存在
            print('\nDownloaded: ',name)
            continue
        print('\nDownloading: ',name) #下载
        try:  #若下载失败,则跳过(应该加一个日志文件)
            wget.download(url)
        except:
            continue