2 PyTorch 官网教材之 autograd 自动微分
程序员文章站
2022-07-12 23:09:28
...
AUTOGRAD:自动微分
官网链接:
https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html
1. 设置自动微分
# 创建有梯度的张量
x = torch.ones(2, 2, requires_grad=True)
# 张量计算
y = x + 2
z = y * y * 3
out = z.mean()
2. 改变微分状态
# .requires_grad_( ... ) 改变flag
print(x.requires_grad) # True
x.requires_grad_(False) # 改变
print(x.requires_grad) # False
print(x.grad_fn) # grad_fn 的类型,加法、乘法、均值grad_fn=<MulBackward0>, grad_fn=<MeanBackward0>
3. backprop
- 简单的反向传播可以直接计算。复杂的就不能,需要指定输入的值。
# backprop
out.backward()
print(x.grad) # 反向计算出的 grad 的值
- Tensor 没法对 Tensor 求导(RuntimeError: grad can be implicitly created only for scalar outputs) 。Now in this case y is no longer a scalar(标量). torch.autograd could not compute the full Jacobian directly, but if we just want the vector-Jacobian product, simply pass the vector to backward as argument:
- CSDN链接:autograd与backward()及相关参数的理解
x = torch.randn(3, requires_grad=True)
y = x * 2
while y.data.norm() < 1000:
y = y * 2
print(y)
v = torch.tensor([0.1, 1.0, 0.0001], dtype=torch.float)
y.backward(v) # 必须添加v,没有会报错:RuntimeError: grad can be implicitly created only for scalar outputs。可以仅为标量输出隐式创建grad
print(x.grad)
下一篇: 每日一题