欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Pytorch学习之cuda

程序员文章站 2022-07-12 20:03:13
...
  • CUDA 语义

torch.cuda用来设置和运行CUDA操作。它会记录下当前所选的GPU,这样一来,你分配的所有CUDA tensors默认就会创建在默认的设备(cpu或者某个gpu)上。当然默认的设备也可以通过torch.cuda.device内容管理器来进行改变。

然而,一旦分配了tensor之后,你不需要考虑你最初所选的设备(cpu或者某个gpu),运算最终的结果一定会跟你的tensor所选的设备是一样的。

跨GPU的运算默认是不允许的,但是可以通过copy_()和类似copy功能的方法to()和cuda()来进行实现跨GPU操作(其实还是在一个GPU上,就是把另一个GPU或者cpu的tensor给拷贝过来而已)。除非你能够实现对等的内存访问,否则任何试图在跨不同设备对tensor进行操作会触发错误。

Below you can find a small example showcasing this:

cuda = torch.device('cuda')     # Default CUDA device
cuda0 = torch.device('cuda:0')
cuda2 = torch.device('cuda:2')  # GPU 2 (these are 0-indexed)

x = torch.tensor([1., 2.], device=cuda0)   
 # x.device is device(type='cuda', index=0)
y = torch.tensor([1., 2.]).cuda()      
# y.device is device(type='cuda', index=0)

with torch.cuda.device(1):
    # allocates a tensor on GPU 1
    a = torch.tensor([1., 2.], device=cuda)

    # transfers a tensor from CPU to GPU 1
    b = torch.tensor([1., 2.]).cuda()
    # a.device and b.device are device(type='cuda', index=1)

    # You can also use ``Tensor.to`` to transfer a tensor:
    b2 = torch.tensor([1., 2.]).to(device=cuda)
    # b.device and b2.device are device(type='cuda', index=1)

    c = a + b
    # c.device is device(type='cuda', index=1)

    z = x + y
    # z.device is device(type='cuda', index=0)

    # even within a context, you can specify the device
    # (or give a GPU index to the .cuda call)
    d = torch.randn(2, device=cuda2)
    e = torch.randn(2).to(cuda2)
    f = torch.randn(2).cuda(cuda2)
    # d.device, e.device, and f.device are all device(type='cuda', index=2)

翻译自:https://pytorch.org/docs/stable/notes/cuda.html

相关标签: cuda