java敏感词过滤工具类——常用工具
程序员文章站
2022-07-12 18:55:44
...
package com.tydic.jtcrm.server.utils;
import java.util.*;
/**
* Created by liu on 2021/3/24.
*
* @Description:
*/
public class BadWordUtil {
public static Set<String> words;
public static List<String> wordText = new ArrayList<>();
public static List<String> word= new ArrayList<>();
public static Map<String,String> wordMap;
public static Map<String,String> wordMaps;
public static int minMatchTYpe = 1; //最小匹配规则
public static int maxMatchType = 2; //最大匹配规则
static{
BadWordUtil.words = readTxtByLine(wordText,word);
addBadWordToHashMap(BadWordUtil.words);
}
public static Set<String> readTxtByLine(List<String> wordText,List<String> word){
for (String words:word){
wordText.add(words);
}
Set<String> keyWordSet = new HashSet<String>();
try{
for (String temp:wordText ){
keyWordSet.add(temp);
}
} catch(Exception e){
e.printStackTrace();
}
return keyWordSet;
}
/**
* 检查文字中是否包含敏感字符,检查规则如下:<br>
* @param txt
* @param beginIndex
* @param matchType
* @return,如果存在,则返回敏感词字符的长度,不存在返回0
* @version 1.0
*/
@SuppressWarnings({ "rawtypes"})
public static int checkBadWord(String txt,int beginIndex,int matchType){
boolean flag = false; //敏感词结束标识位:用于敏感词只有1位的情况
int matchFlag = 0; //匹配标识数默认为0
char word = 0;
Map nowMap = wordMap;
for(int i = beginIndex; i < txt.length() ; i++){
word = txt.charAt(i);
nowMap = (Map) nowMap.get(word); //获取指定key
if(nowMap != null){ //存在,则判断是否为最后一个
matchFlag++; //找到相应key,匹配标识+1
if("1".equals(nowMap.get("isEnd"))){ //如果为最后一个匹配规则,结束循环,返回匹配标识数
flag = true; //结束标志位为true
if(minMatchTYpe == matchType){ //最小规则,直接返回,最大规则还需继续查找
break;
}
}
}
else{ //不存在,直接返回
break;
}
}
/*
*
* if(matchFlag < 2 && !flag){
matchFlag = 0;
}*/
if(!flag){
matchFlag = 0;
}
return matchFlag;
}
/**
* 判断文字是否包含敏感字符
* @param txt 文字
* @param matchType 匹配规则 1:最小匹配规则,2:最大匹配规则
* @return 若包含返回true,否则返回false
* @version 1.0
*/
public static boolean isContaintBadWord(String txt,int matchType){
boolean flag = false;
for(int i = 0 ; i < txt.length() ; i++){
int matchFlag = checkBadWord(txt, i, matchType); //判断是否包含敏感字符
if(matchFlag > 0){ //大于0存在,返回true
flag = true;
}
}
return flag;
}
/**
* 替换敏感字字符
* @param txt
* @param matchType
* @param replaceChar 替换字符,默认*
* @version 1.0
*/
public static String replaceBadWord(String txt,int matchType,String replaceChar){
String resultTxt = txt;
Set<String> set = getBadWord(txt, matchType); //获取所有的敏感词
Iterator<String> iterator = set.iterator();
String word = null;
String replaceString = null;
while (iterator.hasNext()) {
word = iterator.next();
replaceString = getReplaceChars(replaceChar, word.length());
resultTxt = resultTxt.replaceAll(word, replaceString);
}
return resultTxt;
}
/**
* 获取文字中的敏感词
* @param txt 文字
* @param matchType 匹配规则 1:最小匹配规则,2:最大匹配规则
* @return
* @version 1.0
*/
public static Set<String> getBadWord(String txt , int matchType){
Set<String> sensitiveWordList = new HashSet<String>();
for(int i = 0 ; i < txt.length() ; i++){
int length = checkBadWord(txt, i, matchType); //判断是否包含敏感字符
if(length > 0){ //存在,加入list中
sensitiveWordList.add(txt.substring(i, i+length));
i = i + length - 1; //减1的原因,是因为for会自增
}
}
return sensitiveWordList;
}
/**
* 获取替换字符串
* @param replaceChar
* @param length
* @return
* @version 1.0
*/
private static String getReplaceChars(String replaceChar,int length){
String resultReplace = replaceChar;
for(int i = 1 ; i < length ; i++){
resultReplace += replaceChar;
}
return resultReplace;
}
/**
* TODO 将我们的敏感词库构建成了一个类似与一颗一颗的树,这样我们判断一个词是否为敏感词时就大大减少了检索的匹配范围。
* @param keyWordSet 敏感词库
*/
@SuppressWarnings({ "unchecked", "rawtypes" })
public static void addBadWordToHashMap(Set<String> keyWordSet) {
wordMap = new HashMap(keyWordSet.size()); //初始化敏感词容器,减少扩容操作
String key = null;
Map nowMap = null;
Map<String, String> newWorMap = null;
//迭代keyWordSet
Iterator<String> iterator = keyWordSet.iterator();
while(iterator.hasNext()){
key = iterator.next(); //关键字
nowMap = wordMap;
for(int i = 0 ; i < key.length() ; i++){
char keyChar = key.charAt(i); //转换成char型
Object wordMap = nowMap.get(keyChar); //获取
if(wordMap != null){ //如果存在该key,直接赋值
nowMap = (Map) wordMap;
}
else{ //不存在则,则构建一个map,同时将isEnd设置为0,因为他不是最后一个
newWorMap = new HashMap<String,String>();
newWorMap.put("isEnd", "0"); //不是最后一个
nowMap.put(keyChar, newWorMap);
nowMap = newWorMap;
}
if(i == key.length() - 1){
nowMap.put("isEnd", "1"); //最后一个
}
}
}
}
public static void main(String[] args) {
List<String> wordText = new ArrayList<>();
List<String> word= new ArrayList<>();
word.add("组织");
word.add("必须");
word.add("部门");
//在实际需要调用需要脱敏处理的业务处需要改动,下面有例子。word相当于你配置的敏感词
Set<String> strings = BadWordUtil.readTxtByLine(wordText, word);
BadWordUtil.addBadWordToHashMap(strings);
System.out.println("敏感词的数量:" + BadWordUtil.wordMap.size());
String string = "这里是必要组织,高级部门,必须";
System.out.println("待检测语句字数:" + string.length());
long beginTime = System.currentTimeMillis();
Set<String> set = BadWordUtil.getBadWord(string, 2);
long endTime = System.currentTimeMillis();
System.out.println("语句中包含敏感词的个数为:" + set.size() + "。包含:" + set);
String s1 = BadWordUtil.replaceBadWord(string, 2, "*");
System.out.println("脱敏后的语句为:"+s1);
System.out.println("总共消耗时间为:" + (endTime - beginTime));
}
}
下面是我在自己项目中具体调用的案例,可参考修改:
String prodInstName = StringUtil.getString(prodOrderItem.get("prodInstName"));//需要脱敏的字段
if(NullUtil.isNotNull(prodInstName)){
List<String> wordText = new ArrayList<>();
List<String> word= new ArrayList<>();
/* word.add("军队");
word.add("武");*/
List<String> paramValue = qryOrderItemDao.qryForeParam();//paramValue 为我配置在数据库表中的敏感词
word.addAll(paramValue);//将查出来的配置的敏感词赋值给我们敏感词集合
Set<String> strings = BadWordUtil.readTxtByLine(wordText, word);
BadWordUtil.addBadWordToHashMap(strings);
String prodInstNames = BadWordUtil.replaceBadWord(prodInstName, 2, "*");//将需要脱敏的字用*代替。
prodInstName = prodInstNames //用脱敏后的替换
}