欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

SciPy 线性代数

程序员文章站 2022-07-12 14:51:11
...

章节


SciPy线性代数包是使用优化的ATLAS LAPACK和BLAS库构建的,具有高效的线性代数运算能力。

线性代数包里的函数,操作对象都是二维数组。

SciPy.linalg 与 NumPy.linalg
与NumPy.linalg相比,scipy.linalg除了包含numpy.linalg中的所有函数,还具有numpy.linalg中没有的高级功能。

线性方程组求解

scipy.linalg.solve 函数可用于解线性方程。例如,对于线性方程ax+by=za * x + b * y = z,求出未知数x, y值。

示例

解下面的联立方程组:

x+3y+5z=102x+5y+z=82x+3y+8z=3 x + 3y + 5z = 10 \\ 2x + 5y + z = 8 \\ 2x + 3y + 8z = 3

上面的方程组,可以用矩阵表示为:

$$
\left[
\begin{matrix}
1 & 3 & 5 \
2 & 5 & 1 \
2 & 3 & 8
\end{matrix}
\right]

\left[
\begin{matrix}
x \
y \
z
\end{matrix}
\right] =

\left[
\begin{matrix}
10 \
8 \
3
\end{matrix}
\right]

$$

利用矩阵求解上面方程组,如下图所示:

$$
\left[
\begin{matrix}
x \
y \
z
\end{matrix}
\right]

=

\left[
\begin{matrix}
1 & 3 & 5 \
2 & 5 & 1 \
2 & 3 & 8
\end{matrix}
\right]^{-1}

\left[
\begin{matrix}
10 \
8 \
3
\end{matrix}
\right]

= \frac{1}{25}

\left[
\begin{matrix}
-232 \
129 \
19
\end{matrix}
\right]

=

\left[
\begin{matrix}
-9.28 \
5.16 \
0.76
\end{matrix}
\right]

$$

下面我们使用scipy来求解。

scipy.linalg.solve函数接受两个输入,数组a和数组b,数组a表示系数,数组b表示等号右侧值,求出的解将会放在一个数组里返回。

让我们考虑下面的例子。

# 导入scipy和numpy包
from scipy import linalg
import numpy as np

# 声明numpy数组
a = np.array([[1, 3, 5], [2, 5, 1], [2, 3, 8]])
b = np.array([10, 8, 3])

# 求解
x = linalg.solve(a, b)

# 输出解值
print (x)

输出

[-9.28  5.16  0.76]

计算行列式

矩阵A的行列式表示为A|A|,行列式计算是线性代数中的常见运算。

SciPy中,可以使用det()函数计算行列式,它接受一个矩阵作为输入,返回一个标量值,即该矩阵的行列式值。

示例

# 导入scipy和numpy包
from scipy import linalg
import numpy as np

# 声明numpy数组
A = np.array([[3,4],[7,8]])

# 计算行列式
x = linalg.det(A)

# 输出结果
print (x)

输出

-4.0

求取特征值与特征向量

求取矩阵的特征值、特征向量,也是线性代数中的常见计算。

通常,可以根据下面的关系,求取矩阵(A)的特征值(λ)、特征向量(v):

Av=λv Av = λv

scipy.linalg.eig 函数可用于计算特征值与特征向量,函数返回特征值和特征向量。

示例

# 导入scipy和numpy包
from scipy import linalg
import numpy as np

# 声明numpy数组
A = np.array([[3,4],[7,8]])

# 求解
l, v = linalg.eig(A)

# 打印特征值
print('特征值')
print (l)

# 打印特征向量
print('特征向量')
print (v)

上面的程序将生成以下输出。

特征值
[-0.35234996+0.j 11.35234996+0.j]
特征向量
[[-0.76642628 -0.43192981]
 [ 0.64233228 -0.90190722]]

SVD奇异值分解

奇异值分解(SVD)是现在比较常见的算法之一,也是数据挖掘工程师、算法工程师必备的技能之一。 假设A是一个M×NM×N的矩阵,那么通过矩阵分解将会得到UΣVTU,Σ,V^T(V的转置)三个矩阵,其中U是一个M×MM×M的方阵,被称为左奇异向量,方阵里面的向量是正交的;Σ是一个M×NM×N的对角矩阵,除了对角线的元素其他都是0,对角线上的值称为奇异值;VTV^T(V的转置)是一个N×NN×N的矩阵,被称为右奇异向量,方阵里面的向量也都是正交的。

Am×n=Um×mΣm×nVn×nT A_{m\times{n}} = U_{m\times{m}} Σ_{m\times{n}} V_{n\times{n}}^T

让我们考虑下面的例子。

# 导入scipy和numpy包
from scipy import linalg
import numpy as np

# 声明numpy数组
a = np.random.randn(3, 2) + 1.j*np.random.randn(3, 2)

# 输出原矩阵
print('原矩阵')
print(a)

# 求解
U, s, Vh = linalg.svd(a)

# 输出结果
print('奇异值分解')
print(U, "#U")
print(Vh, "#Vh")
print(s, "#s")

上面的程序将生成以下输出。

原矩阵
[[ 1.81840014+0.16615057j -0.47446573-2.36327076j]
 [-0.19366846-0.44489565j -0.03227288+0.02260894j]
 [-0.91921239-0.99340761j -1.33606096+0.40858722j]]
奇异值分解
[[-0.84399035+0.03548862j -0.1574924 +0.44602345j  0.08723906-0.23466874j]
 [ 0.03893388+0.08672055j -0.19156838-0.45118633j -0.02718865-0.86600053j]
 [ 0.23121352+0.47320699j -0.71944217+0.13562682j  0.41089761+0.13336765j]] #U
[[-0.63461867+0.j          0.05670247+0.77074248j]
 [ 0.77282543+0.j          0.04656219+0.63290822j]] #Vh
[3.55734783 0.7144458 ] #s