欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Python滤波

程序员文章站 2022-07-12 10:07:14
...
import numpy as np
import matplotlib.pyplot as plt

def limit_filter(data, top=4):
    '''
        限幅滤波法(又称程序判断滤波法)  
        A、方法:  根据经验判断,确定两次采样允许的最大偏差值(设为top)每次检测到新值时判断:如果本次值与上次值之差<=top,则本次值有效  如果本次值与上次值之差>top,则本次值无效,放弃本次值,用上次值代替本次值  
        B、优点:  能有效克服因偶然因素引起的脉冲干扰  
        C、缺点:  无法抑制那种周期性的干扰  平滑度差
    '''
    flag_arr = np.argwhere(data<0)
    temp_data = abs(data)
    for i in range(1, len(temp_data)):
        if abs(temp_data[i] - temp_data[i-1])  > top:
            temp_data[i] = temp_data[i-1]
    temp_data[flag_arr] *= -1
    return temp_data

def median_filter(data, num=3):
    '''
        中位值滤波法  
        A、方法:  连续采样num次(num取奇数)  把N次采样值按大小排列  取中间值为本次有效值  
        B、优点:  能有效克服因偶然因素引起的波动干扰  对温度、液位的变化缓慢的被测参数有良好的滤波效果  
        C、缺点:  对流量、速度等快速变化的参数不宜  
    '''
    data_length = len(data)
    item_num = data_length // num + 1
    padwidth = item_num * num - data_length
    temp_data = np.pad(data, (0, padwidth), 'edge').reshape(item_num, num)
    median_arr = np.median(temp_data, axis=1).reshape(item_num).repeat(num)[:data_length]
    return median_arr


def average_filter(data, num=3):
    '''
        算术平均滤波法  
        A、方法:  连续取num个采样值进行算术平均运算  num值较大时:信号平滑度较高,但灵敏度较低  num值较小时:信号平滑度较低,但灵敏度较高  num值的选取:一般流量,num=12;压力:num=4  
        B、优点:  适用于对一般具有随机干扰的信号进行滤波  这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动  
        C、缺点:  对于测量速度较慢或要求数据计算速度较快的实时控制不适用  比较浪费RAM  
    '''
    data_length = len(data)
    item_num = data_length // num + 1
    padwidth = item_num * num - data_length
    temp_data = np.pad(data, (0, padwidth), 'edge').reshape(item_num, num)
    median_arr = np.mean(temp_data, axis=1).reshape(item_num).repeat(num)[:data_length]
    return median_arr

def dynamic_average_filter(data, num=3):
    '''
        递推平均滤波法(又称滑动平均滤波法)  
        A、方法:  把连续取num个采样值看成一个队列  队列的长度固定为num  每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)  把队列中的num个数据进行算术平均运算,就可获得新的滤波结果  num值的选取:流量,num=12;压力:num=4;液面,num=4~12;温度,num=1~4  
        B、优点:  对周期性干扰有良好的抑制作用,平滑度高  适用于高频振荡的系统  
        C、缺点:  灵敏度低  对偶然出现的脉冲性干扰的抑制作用较差  不易消除由于脉冲干扰所引起的采样值偏差  不适用于脉冲干扰比较严重的场合  比较浪费RAM  
    '''
    temp_data = data.copy()
    for i in range(len(temp_data)):
        temp_data[i] = np.mean(temp_data[i:i+num])
    return temp_data


def median_average_filter(data, num=3):
    '''
        中位值平均滤波法(又称防脉冲干扰平均滤波法)  
        A、方法:  相当于“中位值滤波法”+“算术平均滤波法”  连续采样num个数据,去掉一个最大值和一个最小值  然后计算num-2个数据的算术平均值  num值的选取:3~14  
        B、优点:  融合了两种滤波法的优点  对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差  
        C、缺点:  测量速度较慢,和算术平均滤波法一样  比较浪费RAM  
    '''
    data_length = len(data)
    item_num = data_length // num + 1
    padwidth = item_num * num - data_length
    temp_data = np.pad(data, (0, padwidth), 'edge').reshape(item_num, num)
    maxindex = temp_data.argmax(axis=1)
    minindex = temp_data.argmin(axis=1)
    temp_data[range(temp_data.shape[0]),maxindex] = 0
    temp_data[range(temp_data.shape[0]),minindex] = 0
    median_arr = np.mean(temp_data, axis=1).reshape(item_num).repeat(num)[:data_length]
    return median_arr

def dynamic_limit_average_filter(data, num=3, top=4):
    '''
        限幅平均滤波法  
        A、方法:  相当于“限幅滤波法”+“递推平均滤波法”  每次采样到的新数据先进行限幅处理,  再送入队列进行递推平均滤波处理  
        B、优点:  融合了两种滤波法的优点  对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差  
        C、缺点:  比较浪费RAM  
    '''
    flag_arr = np.argwhere(data<0)
    temp_data = abs(data)
    for i in range(1, len(temp_data)):
        if abs(temp_data[i] - temp_data[i-1])  > top:
            temp_data[i] = temp_data[i-1]
        temp_data[i] = np.mean(temp_data[i:i+num])

    temp_data[flag_arr] *= -1
    return temp_data


def lag_filter(data, rate=0.3):
    '''
        一阶滞后滤波法  
        A、方法:  取a=0~1  本次滤波结果=(1-a)*本次采样值+a*上次滤波结果  
        B、优点:  对周期性干扰具有良好的抑制作用  适用于波动频率较高的场合  
        C、缺点:  相位滞后,灵敏度低  滞后程度取决于a值大小  不能消除滤波频率高于采样频率的1/2的干扰信号  
    '''
    temp_data = data.copy()
    for i in range(1, len(temp_data)):
        temp_data[i] = (1-rate) * temp_data[i] + rate * temp_data[i-1]
    return temp_data

def dynamic_weight_average_filter(data, num):
    '''
        加权递推平均滤波法  
        A、方法:  是对递推平均滤波法的改进,即不同时刻的数据加以不同的权  通常是,越接近现时刻的数据,权取得越大。  给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低  
        B、优点:  适用于有较大纯滞后时间常数的对象  和采样周期较短的系统  
        C、缺点:  对于纯滞后时间常数较小,采样周期较长,变化缓慢的信号  不能迅速反应系统当前所受干扰的严重程度,滤波效果差 
    '''
    pass

def test3():
    '''
        消抖滤波法  
        A、方法:  设置一个滤波计数器  将每次采样值与当前有效值比较:  如果采样值=当前有效值,则计数器清零  如果采样值<>当前有效值,则计数器+1,并判断计数器是否>=上限N(溢出)  如果计数器溢出,则将本次值替换当前有效值,并清计数器  
        B、优点:  对于变化缓慢的被测参数有较好的滤波效果,  可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动  
        C、缺点:  对于快速变化的参数不宜  如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值导  入系统 
    '''
    pass


def test4():
    '''
        限幅消抖滤波法  
        A、方法:  相当于“限幅滤波法”+“消抖滤波法”  先限幅,后消抖  
        B、优点:  继承了“限幅”和“消抖”的优点  改进了“消抖滤波法”中的某些缺陷,避免将干扰值导入系统  
        C、缺点:  对于快速变化的参数不宜 
    '''
    pass



if __name__ == '__main__':
    a = np.array([1,3,4,4,5,7,6,9,9,9,10,11,13,15,15,17,17,18,18,21,22,21,22,24,25,27,28,29,28,24,22,21,21,26,32,32,29,28,30,30,31,31,28,30,27,31,30,32,29,30,27,30,33,30,20,22,22,26,30,33,30,32,27,29,29,30,32,30,29,28,27,30,28,33,32,33,25,24,31,36,32,32,32,36,26,25,32,31,25,31,36,24,29,25,34,32,26,34,27,31,28,26,32,33,26,28,35,26,31,28,26,25,30,26,20,30,28,23,24,19,27,27,27,24,27,27,27,28,22])
    plt.plot(a)

    # 中位值滤波
    # median_data = median_filter(a, 3)
    # plt.title("media:3")
    # plt.plot(median_data)

    # 算术平均值滤波
    # average_data = average_filter(a, 3)
    # plt.title("average:3")
    # plt.plot(average_data)

    # 滑动平均值滤波
    # dynamic_average_data = dynamic_average_filter(a, 3)
    # plt.title("dynamic_average:3")
    # plt.plot(dynamic_average_data)

    # 限幅平均滤波
    # dynamic_limit_average_data = dynamic_limit_average_filter(a, 3, 4)
    # plt.title("limit:4 average:3")
    # plt.plot(dynamic_limit_average_data)

    # # 中位值平均滤波
    # median_average_data = median_average_filter(a, 3)
    # plt.title("median_average:3")
    # plt.plot(median_average_data)

    # 限幅滤波
    # limited_data = limit_filter(a, 4)
    # plt.title("limit:4")
    # plt.plot(limited_data)

    # 一阶滞后滤波
    lag_data = lag_filter(a, 0.3)
    plt.title("lag:0.3")
    plt.plot(lag_data)


    plt.show()

 

相关标签: 滤波