欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

redis的HyperLogLog实战

程序员文章站 2022-07-10 20:29:29
...

本文主要研究一下redis的HyperLogLog的用场

相关命令

pfadd

每添加一个元素的复杂度为O(1)

127.0.0.1:6379> pfadd uv0907 uid1 uid2 uid3
(integer) 1
复制代码
  • 添加元素到HyperLogLog中,如果内部有变动返回1,没有返回0

pfcount

作用域单个HyperLogLog时,复杂度为O(1),作用于多个HyperLogLog时,复杂度为O(N)

127.0.0.1:6379> pfcount uv0907
(integer) 3
复制代码
  • 返回该HyperLogLog的近似基数,如果是指定多个HyperLogLog则返回的是他们的并集的近似基数

pfmerge

复杂度为O(N),N为合并后的HyperLogLog数量

127.0.0.1:6379> pfadd uv0906 uid1 uid4 uid5
(integer) 1
127.0.0.1:6379> pfmerge uv0607 uv0906 uv0907
OK
127.0.0.1:6379> pfcount uv0607
(integer) 5
复制代码
  • 合并指定的HyperLogLog到新的HyperLogLog中

使用场景

HyperLogLog是Probabilistic data Structures的一种,这类数据结构的基本大的思路就是使用统计概率上的算法,牺牲数据的精准性来节省内存的占用空间及提升相关操作的性能。最典型的使用场景就是统计网站的每日UV。实例如下:

    @Test
    public void testUv(){
        String uv1 = "uv96";
        String uv2 = "uv97";
        IntStream.rangeClosed(1,100)
                .forEach(i -> {
                    System.out.println(i);
                    redisTemplate.opsForHyperLogLog()
                            .add(uv1,"user"+i);
                    redisTemplate.opsForHyperLogLog()
                            .add(uv2,"user"+i/2);
                });

        long uv1Count = redisTemplate.opsForHyperLogLog().size(uv1);
        System.out.println(uv1Count);
        long uv2Count = redisTemplate.opsForHyperLogLog().size(uv2);
        System.out.println(uv2Count);

        String uv1uv2 = "uv67";
        Long uv1uv2Count = redisTemplate.opsForHyperLogLog().union(uv1uv2,uv1,uv2);
        System.out.println(uv1uv2Count);
        Long realCount = redisTemplate.opsForHyperLogLog().size(uv1uv2);
        System.out.println(realCount);
    }
复制代码

小结

  • redis的HyperLogLog特别是适合用来对海量数据进行unique统计,对内存占用有要求,而且还能够接受一定的错误率的场景。
  • 对于union操作由于是O(N),在海量数据层面需要注意慢查询问题。

doc

上一篇: java实现栈

下一篇: Java数组实现栈