欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

AES(128、ECB、PKCS5Padding)

程序员文章站 2022-07-08 16:44:15
...

1. 网页版AES路径

    AES网页版加密、解密工具

2. 概念【PKCS5Padding与PKCS7Padding】

    详见:https://blog.csdn.net/xz_studying/article/details/94229023

3. 源码

3.1 main.c

#include <stdio.h>
#include <string.h>
#include "aes.h"

void printHex(const uint8_t *ptr, int len, char *tag) {
	int i;

    printf("%s\ndata[%d]: ", tag, len);
    for (i = 0; i < len; ++i) {
        printf("%.2X ", *ptr++);
    }
    printf("\n");
}

void printHex1(const uint8_t *ptr, int len, char *tag) {
	int i;

    printf("%s[%d]: ", tag, len);
    for (i = 0; i < len; ++i) {
        printf("%.2X ", *ptr++);
    }
    printf("\n");
}

void printStr(const uint8_t *ptr, int len, char *tag) {
    printf("%s\ndata[%d]: %s\n", tag, len, ptr);
}

void printState(uint8_t (*state)[4], char *tag) {
	int i;
	
    printf("%s\n", tag);
    for (i = 0; i < 4; ++i) {
        printf("%.2X %.2X %.2X %.2X\n", state[i][0], state[i][1], state[i][2], state[i][3]);
    }
    printf("\n");
}

int main() 
{
    int Datalen;
    int k;
    int PaddingLen;
	int EncBytes; //数据内容加密后的字节数
    char key2[]="6543210123456789";
    char data[128];
    char ct2[128];
    char plain2[128];

	//填充原始数据
	memset(data, 0, sizeof(data));
	strcpy(data, "123456789012345678901234567890121");

    Datalen = strlen(data);
    PaddingLen = (Datalen%16);
	printf("\n");
	printf("Datalen=%d, PaddingLen=%d\n", Datalen, PaddingLen);
	printf("Before data:\nStr:%s\n", data);
	printHex1(data, strlen(data), "Hex");
   if(PaddingLen == 0)
	{
		for(k=0; k<16; k++) 	
			data[Datalen+k] = 0x10; 
	}
	else
    {
        for(k=0;k<(16-PaddingLen);k++) 
			data[Datalen+k]=(16-PaddingLen); 
    }
	printf("After data:\nStr:%s\n", data);
	printHex1(data, strlen(data), "Hex");
	
	EncBytes = 16 + (Datalen/16)*16; //计算原始数据加密后的字节数
	
	printf("\n");
    aesEncrypt(key2, 16, data, ct2, EncBytes);
    printHex(ct2, EncBytes, "encryption:");
	printf("\n");
	memset(plain2, 0, sizeof(plain2));
    aesDecrypt(key2, 16, ct2, plain2, EncBytes);
    //printHex(plain2, EncBytes, "decryption:");
	printStr(plain2, Datalen, "decryption:");
	printf("\n");

    return 0;
}

3.2 aes.h

#ifndef AES_AES_H
#define AES_AES_H

#ifdef __cplusplus
extern "C" {
#endif

#include <stdint.h>

typedef struct{
    uint32_t eK[44], dK[44];    // encKey, decKey
    int Nr; // 10 rounds
}AesKey;

int loadStateArray(uint8_t state[4][4], const uint8_t *in);

int storeStateArray(uint8_t state[4][4], uint8_t *out);

int keyExpansion(const uint8_t *key, uint32_t keyLen, AesKey *aesKey);

int addRoundKey(uint8_t state[4][4], const uint32_t key[4]);

int subBytes(uint8_t state[4][4]);

int invSubBytes(uint8_t state[4][4]);

int shiftRows(uint8_t state[4][4]);

int invShiftRows(uint8_t state[4][4]);

uint8_t GMul(uint8_t a, uint8_t b);

int mixColumns(uint8_t state[4][4]);

int invMixColumns(uint8_t state[4][4]);

// data length must be multiple of 16B, so data need to be padded before encryption/decryption
int aesEncrypt(uint8_t *key, uint32_t keyLen, uint8_t *pt, uint8_t *ct, uint32_t len);

int aesDecrypt(uint8_t *key, uint32_t keyLen,uint8_t *ct, uint8_t *pt, uint32_t len);

#ifdef __cplusplus
}
#endif

#endif //AES_AES_H

3.3  aes.c

#include "aes.h"
#include <stdio.h>
#include <string.h>

#define BLOCKSIZE 16

#define LOAD32H(x, y) \
  do { (x) = ((uint32_t)((y)[0] & 0xff)<<24) | ((uint32_t)((y)[1] & 0xff)<<16) | \
             ((uint32_t)((y)[2] & 0xff)<<8)  | ((uint32_t)((y)[3] & 0xff));} while(0)

#define STORE32H(x, y) \
  do { (y)[0] = (uint8_t)(((x)>>24) & 0xff); (y)[1] = (uint8_t)(((x)>>16) & 0xff);   \
       (y)[2] = (uint8_t)(((x)>>8) & 0xff); (y)[3] = (uint8_t)((x) & 0xff); } while(0)

/* extract a byte */
#define BYTE(x, n) (((x) >> (8 * (n))) & 0xff)

/* used for keyExpansion */
#define MIX(x) (((S[BYTE(x, 2)] << 24) & 0xff000000) ^ ((S[BYTE(x, 1)] << 16) & 0xff0000) ^ \
                ((S[BYTE(x, 0)] << 8) & 0xff00) ^ (S[BYTE(x, 3)] & 0xff))
#define ROF32(x, n)  (((x) << (n)) | ((x) >> (32-(n))))

#define ROR32(x, n)  (((x) >> (n)) | ((x) << (32-(n))))

/* for 128-bit blocks, Rijndael never uses more than 10 rcon values */
static const uint32_t rcon[10] = {
        0x01000000UL, 0x02000000UL, 0x04000000UL, 0x08000000UL, 0x10000000UL,
        0x20000000UL, 0x40000000UL, 0x80000000UL, 0x1B000000UL, 0x36000000UL
};

unsigned char S[256] = {
        0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
        0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
        0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
       0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
        0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
        0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
        0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
        0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
        0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
        0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
        0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
       0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
        0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
        0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
        0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
       0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
};

unsigned char inv_S[256] = {
        0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB,
        0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB,
        0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
        0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25,
        0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92,
        0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
        0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06,
        0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B,
       0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
        0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E,
        0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,
        0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
       0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F,
        0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF,
        0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,
        0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D
};


/* copy in[16] to state[4][4] */
int loadStateArray(uint8_t (*state)[4], const uint8_t *in) {
	int i;
	int j;

    for (i = 0; i < 4; ++i) {
        for (j = 0; j < 4; ++j) {
            state[j][i] = *in++;
        }
    }
    return 0;
}

/* copy state[4][4] to out[16] */
int storeStateArray(uint8_t (*state)[4], uint8_t *out) {
	int i;
	int j;

    for (i = 0; i < 4; ++i) {
        for (j = 0; j < 4; ++j) {
            *out++ = state[j][i];
        }
    }
    return 0;
}


int keyExpansion(const uint8_t *key, uint32_t keyLen, AesKey *aesKey) {

    int i;
	int j;
	
    if (NULL == key || NULL == aesKey){
        printf("keyExpansion param is NULL\n");
        return -1;
    }

    if (keyLen != 16){
        printf("keyExpansion keyLen = %d, Not support.\n", keyLen);
        return -1;
    }

    uint32_t *w = aesKey->eK;
    uint32_t *v = aesKey->dK;

    /* keyLen is 16 Bytes, generate uint32_t W[44]. */

    /* W[0-3] */
    for (i = 0; i < 4; ++i) {
        LOAD32H(w[i], key + 4*i);
    }

    /* W[4-43] */
    for (i = 0; i < 10; ++i) {
        w[4] = w[0] ^ MIX(w[3]) ^ rcon[i];
        w[5] = w[1] ^ w[4];
        w[6] = w[2] ^ w[5];
        w[7] = w[3] ^ w[6];
        w += 4;
    }

    w = aesKey->eK+44 - 4;
    for (j = 0; j < 11; ++j) {

        for (i = 0; i < 4; ++i) {
            v[i] = w[i];
        }
        w -= 4;
        v += 4;
    }

    return 0;
}

int addRoundKey(uint8_t (*state)[4], const uint32_t *key) {
    uint8_t k[4][4];
	int i;
	int j;

    /* i: row, j: col */
    for (i = 0; i < 4; ++i) {
        for (j = 0; j < 4; ++j) {
            k[i][j] = (uint8_t) BYTE(key[j], 3 - i);  /* copy uint32 key[4] to uint8 k[4][4] */
            state[i][j] ^= k[i][j];
        }
    }

    return 0;
}

int subBytes(uint8_t (*state)[4]) {
    /* i: row, j: col */
	int i;
	int j;
	
    for (i = 0; i < 4; ++i) {
        for (j = 0; j < 4; ++j) {
            state[i][j] = S[state[i][j]];
        }
    }

    return 0;
}


int invSubBytes(uint8_t (*state)[4]) {
    /* i: row, j: col */
	int i;
	int j;
    for (i = 0; i < 4; ++i) {
        for (j = 0; j < 4; ++j) {
            state[i][j] = inv_S[state[i][j]];
        }
    }

    return 0;
}

int shiftRows(uint8_t (*state)[4]) {
    uint32_t block[4] = {0};
    int i;
    /* i: row */
    for (i = 0; i < 4; ++i) {
        LOAD32H(block[i], state[i]);
        block[i] = ROF32(block[i], 8*i);
        STORE32H(block[i], state[i]);
    }

    return 0;
}

int invShiftRows(uint8_t (*state)[4]) {
    uint32_t block[4] = {0};
    int i;
    /* i: row */
    for (i = 0; i < 4; ++i) {
        LOAD32H(block[i], state[i]);
        block[i] = ROR32(block[i], 8*i);
        STORE32H(block[i], state[i]);
    }

    return 0;
}


/* Galois Field (256) Multiplication of two Bytes */
uint8_t GMul(uint8_t u, uint8_t v) {
    uint8_t p = 0;
    int i;
	int flag;
	
    for (i = 0; i < 8; ++i) {
        if (u & 0x01) {    //
            p ^= v;
        }

        flag = (v & 0x80);
        v <<= 1;
        if (flag) {
            v ^= 0x1B; /* x^8 + x^4 + x^3 + x + 1 */
        }

        u >>= 1;
    }

    return p;
}

int mixColumns(uint8_t (*state)[4]) {
    uint8_t tmp[4][4];
    uint8_t M[4][4] = {{0x02, 0x03, 0x01, 0x01},
                       {0x01, 0x02, 0x03, 0x01},
                       {0x01, 0x01, 0x02, 0x03},
                       {0x03, 0x01, 0x01, 0x02}};
    int i;
	int j;
    /* copy state[4][4] to tmp[4][4] */
    for (i = 0; i < 4; ++i) {
        for (j = 0; j < 4; ++j){
            tmp[i][j] = state[i][j];
        }
    }

    for (i = 0; i < 4; ++i) {
        for (j = 0; j < 4; ++j) {
            state[i][j] = GMul(M[i][0], tmp[0][j]) ^ GMul(M[i][1], tmp[1][j])
                        ^ GMul(M[i][2], tmp[2][j]) ^ GMul(M[i][3], tmp[3][j]);
        }
    }

    return 0;
}

int invMixColumns(uint8_t (*state)[4]) {
    uint8_t tmp[4][4];
    uint8_t M[4][4] = {{0x0E, 0x0B, 0x0D, 0x09},
                       {0x09, 0x0E, 0x0B, 0x0D},
                       {0x0D, 0x09, 0x0E, 0x0B},
                       {0x0B, 0x0D, 0x09, 0x0E}};
    int i;
	int j;
    /* copy state[4][4] to tmp[4][4] */
    for (i = 0; i < 4; ++i) {
        for (j = 0; j < 4; ++j){
            tmp[i][j] = state[i][j];
        }
    }

    for (i = 0; i < 4; ++i) {
        for (j = 0; j < 4; ++j) {
            state[i][j] = GMul(M[i][0], tmp[0][j]) ^ GMul(M[i][1], tmp[1][j])
                          ^ GMul(M[i][2], tmp[2][j]) ^ GMul(M[i][3], tmp[3][j]);
        }
    }

    return 0;
}


int aesEncrypt(uint8_t *key, uint32_t keyLen,uint8_t *pt, uint8_t *ct, uint32_t len) {

    AesKey aesKey;
    uint8_t *pos = ct;
    const uint32_t *rk = aesKey.eK;
    uint8_t out[BLOCKSIZE] = {0};
    uint8_t actualKey[16] = {0};
    uint8_t state[4][4] = {0};
    int i;
	int j;
	
    if (NULL == key || NULL == pt || NULL == ct){
        printf("param err.\n");
        return -1;
    }

    if (keyLen > 16){
        printf("keyLen must be 16.\n");
        return -1;
    }

    if (len % BLOCKSIZE){
        printf("inLen is invalid.\n");
        return -1;
    }

    memcpy(actualKey, key, keyLen);
    keyExpansion(actualKey, 16, &aesKey);

    for (i = 0; i < len; i += BLOCKSIZE) {

        loadStateArray(state, pt);
        addRoundKey(state, rk);

        for (j = 1; j < 10; ++j) {
            rk += 4;
            subBytes(state);
            shiftRows(state);
            mixColumns(state);
            addRoundKey(state, rk);
        }

        subBytes(state);
        shiftRows(state);
        addRoundKey(state, rk+4);

        storeStateArray(state, pos);

        pos += BLOCKSIZE;
        pt += BLOCKSIZE;
        rk = aesKey.eK;
    }
    return 0;
}


int aesDecrypt(uint8_t *key, uint32_t keyLen,uint8_t *ct, uint8_t *pt, uint32_t len) {
    AesKey aesKey;
    uint8_t *pos = pt;
    const uint32_t *rk = aesKey.dK;
    uint8_t out[BLOCKSIZE] = {0};
    uint8_t actualKey[16] = {0};
    uint8_t state[4][4] = {0};
    int i;
    int j;
	
    if (NULL == key || NULL == ct || NULL == pt){
        printf("param err.\n");
        return -1;
    }

    if (keyLen > 16){
        printf("keyLen must be 16.\n");
        return -1;
    }

    if (len % BLOCKSIZE){
        printf("inLen is invalid.\n");
        return -1;
    }

    memcpy(actualKey, key, keyLen);
    keyExpansion(actualKey, 16, &aesKey);

    for (i = 0; i < len; i += BLOCKSIZE) {
        loadStateArray(state, ct);
        addRoundKey(state, rk);

        for (j = 1; j < 10; ++j) {
            rk += 4;
            invShiftRows(state);
            invSubBytes(state);
            addRoundKey(state, rk);
            invMixColumns(state);
        }

        invSubBytes(state);
        invShiftRows(state);
        addRoundKey(state, rk+4);

        storeStateArray(state, pos);
        pos += BLOCKSIZE;
        ct += BLOCKSIZE;
        rk = aesKey.dK;
    }
    return 0;
}

3.4 编译、执行


[email protected]:/data/aes# gcc main.c aes.c 
[email protected]:/data/aes# ./a.out 

3. 5 结果

[email protected]:/data/aes# ./a.out          

Datalen=33, PaddingLen=1
Before data:
Str:123456789012345678901234567890121
Hex[33]: 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 31 
After data:
Str:123456789012345678901234567890121
Hex[48]: 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 31 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 

encryption:
data[48]: E7 E3 CA B1 23 CF 00 AF 2A 39 D7 B2 3F EC B8 F5 7E 7A 40 2A DC 95 06 DE EB 88 9D F4 A6 14 76 3D AC 7D 51 F4 98 9A 79 35 EC CE EF 74 50 03 30 25 

decryption:
data[33]: 123456789012345678901234567890121