AES(128、ECB、PKCS5Padding)
程序员文章站
2022-07-08 16:44:15
...
1. 网页版AES路径
2. 概念【PKCS5Padding与PKCS7Padding】
详见:https://blog.csdn.net/xz_studying/article/details/94229023
3. 源码
3.1 main.c
#include <stdio.h>
#include <string.h>
#include "aes.h"
void printHex(const uint8_t *ptr, int len, char *tag) {
int i;
printf("%s\ndata[%d]: ", tag, len);
for (i = 0; i < len; ++i) {
printf("%.2X ", *ptr++);
}
printf("\n");
}
void printHex1(const uint8_t *ptr, int len, char *tag) {
int i;
printf("%s[%d]: ", tag, len);
for (i = 0; i < len; ++i) {
printf("%.2X ", *ptr++);
}
printf("\n");
}
void printStr(const uint8_t *ptr, int len, char *tag) {
printf("%s\ndata[%d]: %s\n", tag, len, ptr);
}
void printState(uint8_t (*state)[4], char *tag) {
int i;
printf("%s\n", tag);
for (i = 0; i < 4; ++i) {
printf("%.2X %.2X %.2X %.2X\n", state[i][0], state[i][1], state[i][2], state[i][3]);
}
printf("\n");
}
int main()
{
int Datalen;
int k;
int PaddingLen;
int EncBytes; //数据内容加密后的字节数
char key2[]="6543210123456789";
char data[128];
char ct2[128];
char plain2[128];
//填充原始数据
memset(data, 0, sizeof(data));
strcpy(data, "123456789012345678901234567890121");
Datalen = strlen(data);
PaddingLen = (Datalen%16);
printf("\n");
printf("Datalen=%d, PaddingLen=%d\n", Datalen, PaddingLen);
printf("Before data:\nStr:%s\n", data);
printHex1(data, strlen(data), "Hex");
if(PaddingLen == 0)
{
for(k=0; k<16; k++)
data[Datalen+k] = 0x10;
}
else
{
for(k=0;k<(16-PaddingLen);k++)
data[Datalen+k]=(16-PaddingLen);
}
printf("After data:\nStr:%s\n", data);
printHex1(data, strlen(data), "Hex");
EncBytes = 16 + (Datalen/16)*16; //计算原始数据加密后的字节数
printf("\n");
aesEncrypt(key2, 16, data, ct2, EncBytes);
printHex(ct2, EncBytes, "encryption:");
printf("\n");
memset(plain2, 0, sizeof(plain2));
aesDecrypt(key2, 16, ct2, plain2, EncBytes);
//printHex(plain2, EncBytes, "decryption:");
printStr(plain2, Datalen, "decryption:");
printf("\n");
return 0;
}
3.2 aes.h
#ifndef AES_AES_H
#define AES_AES_H
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
typedef struct{
uint32_t eK[44], dK[44]; // encKey, decKey
int Nr; // 10 rounds
}AesKey;
int loadStateArray(uint8_t state[4][4], const uint8_t *in);
int storeStateArray(uint8_t state[4][4], uint8_t *out);
int keyExpansion(const uint8_t *key, uint32_t keyLen, AesKey *aesKey);
int addRoundKey(uint8_t state[4][4], const uint32_t key[4]);
int subBytes(uint8_t state[4][4]);
int invSubBytes(uint8_t state[4][4]);
int shiftRows(uint8_t state[4][4]);
int invShiftRows(uint8_t state[4][4]);
uint8_t GMul(uint8_t a, uint8_t b);
int mixColumns(uint8_t state[4][4]);
int invMixColumns(uint8_t state[4][4]);
// data length must be multiple of 16B, so data need to be padded before encryption/decryption
int aesEncrypt(uint8_t *key, uint32_t keyLen, uint8_t *pt, uint8_t *ct, uint32_t len);
int aesDecrypt(uint8_t *key, uint32_t keyLen,uint8_t *ct, uint8_t *pt, uint32_t len);
#ifdef __cplusplus
}
#endif
#endif //AES_AES_H
3.3 aes.c
#include "aes.h"
#include <stdio.h>
#include <string.h>
#define BLOCKSIZE 16
#define LOAD32H(x, y) \
do { (x) = ((uint32_t)((y)[0] & 0xff)<<24) | ((uint32_t)((y)[1] & 0xff)<<16) | \
((uint32_t)((y)[2] & 0xff)<<8) | ((uint32_t)((y)[3] & 0xff));} while(0)
#define STORE32H(x, y) \
do { (y)[0] = (uint8_t)(((x)>>24) & 0xff); (y)[1] = (uint8_t)(((x)>>16) & 0xff); \
(y)[2] = (uint8_t)(((x)>>8) & 0xff); (y)[3] = (uint8_t)((x) & 0xff); } while(0)
/* extract a byte */
#define BYTE(x, n) (((x) >> (8 * (n))) & 0xff)
/* used for keyExpansion */
#define MIX(x) (((S[BYTE(x, 2)] << 24) & 0xff000000) ^ ((S[BYTE(x, 1)] << 16) & 0xff0000) ^ \
((S[BYTE(x, 0)] << 8) & 0xff00) ^ (S[BYTE(x, 3)] & 0xff))
#define ROF32(x, n) (((x) << (n)) | ((x) >> (32-(n))))
#define ROR32(x, n) (((x) >> (n)) | ((x) << (32-(n))))
/* for 128-bit blocks, Rijndael never uses more than 10 rcon values */
static const uint32_t rcon[10] = {
0x01000000UL, 0x02000000UL, 0x04000000UL, 0x08000000UL, 0x10000000UL,
0x20000000UL, 0x40000000UL, 0x80000000UL, 0x1B000000UL, 0x36000000UL
};
unsigned char S[256] = {
0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
};
unsigned char inv_S[256] = {
0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB,
0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB,
0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25,
0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92,
0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06,
0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B,
0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E,
0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,
0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F,
0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF,
0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D
};
/* copy in[16] to state[4][4] */
int loadStateArray(uint8_t (*state)[4], const uint8_t *in) {
int i;
int j;
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) {
state[j][i] = *in++;
}
}
return 0;
}
/* copy state[4][4] to out[16] */
int storeStateArray(uint8_t (*state)[4], uint8_t *out) {
int i;
int j;
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) {
*out++ = state[j][i];
}
}
return 0;
}
int keyExpansion(const uint8_t *key, uint32_t keyLen, AesKey *aesKey) {
int i;
int j;
if (NULL == key || NULL == aesKey){
printf("keyExpansion param is NULL\n");
return -1;
}
if (keyLen != 16){
printf("keyExpansion keyLen = %d, Not support.\n", keyLen);
return -1;
}
uint32_t *w = aesKey->eK;
uint32_t *v = aesKey->dK;
/* keyLen is 16 Bytes, generate uint32_t W[44]. */
/* W[0-3] */
for (i = 0; i < 4; ++i) {
LOAD32H(w[i], key + 4*i);
}
/* W[4-43] */
for (i = 0; i < 10; ++i) {
w[4] = w[0] ^ MIX(w[3]) ^ rcon[i];
w[5] = w[1] ^ w[4];
w[6] = w[2] ^ w[5];
w[7] = w[3] ^ w[6];
w += 4;
}
w = aesKey->eK+44 - 4;
for (j = 0; j < 11; ++j) {
for (i = 0; i < 4; ++i) {
v[i] = w[i];
}
w -= 4;
v += 4;
}
return 0;
}
int addRoundKey(uint8_t (*state)[4], const uint32_t *key) {
uint8_t k[4][4];
int i;
int j;
/* i: row, j: col */
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) {
k[i][j] = (uint8_t) BYTE(key[j], 3 - i); /* copy uint32 key[4] to uint8 k[4][4] */
state[i][j] ^= k[i][j];
}
}
return 0;
}
int subBytes(uint8_t (*state)[4]) {
/* i: row, j: col */
int i;
int j;
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) {
state[i][j] = S[state[i][j]];
}
}
return 0;
}
int invSubBytes(uint8_t (*state)[4]) {
/* i: row, j: col */
int i;
int j;
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) {
state[i][j] = inv_S[state[i][j]];
}
}
return 0;
}
int shiftRows(uint8_t (*state)[4]) {
uint32_t block[4] = {0};
int i;
/* i: row */
for (i = 0; i < 4; ++i) {
LOAD32H(block[i], state[i]);
block[i] = ROF32(block[i], 8*i);
STORE32H(block[i], state[i]);
}
return 0;
}
int invShiftRows(uint8_t (*state)[4]) {
uint32_t block[4] = {0};
int i;
/* i: row */
for (i = 0; i < 4; ++i) {
LOAD32H(block[i], state[i]);
block[i] = ROR32(block[i], 8*i);
STORE32H(block[i], state[i]);
}
return 0;
}
/* Galois Field (256) Multiplication of two Bytes */
uint8_t GMul(uint8_t u, uint8_t v) {
uint8_t p = 0;
int i;
int flag;
for (i = 0; i < 8; ++i) {
if (u & 0x01) { //
p ^= v;
}
flag = (v & 0x80);
v <<= 1;
if (flag) {
v ^= 0x1B; /* x^8 + x^4 + x^3 + x + 1 */
}
u >>= 1;
}
return p;
}
int mixColumns(uint8_t (*state)[4]) {
uint8_t tmp[4][4];
uint8_t M[4][4] = {{0x02, 0x03, 0x01, 0x01},
{0x01, 0x02, 0x03, 0x01},
{0x01, 0x01, 0x02, 0x03},
{0x03, 0x01, 0x01, 0x02}};
int i;
int j;
/* copy state[4][4] to tmp[4][4] */
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j){
tmp[i][j] = state[i][j];
}
}
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) {
state[i][j] = GMul(M[i][0], tmp[0][j]) ^ GMul(M[i][1], tmp[1][j])
^ GMul(M[i][2], tmp[2][j]) ^ GMul(M[i][3], tmp[3][j]);
}
}
return 0;
}
int invMixColumns(uint8_t (*state)[4]) {
uint8_t tmp[4][4];
uint8_t M[4][4] = {{0x0E, 0x0B, 0x0D, 0x09},
{0x09, 0x0E, 0x0B, 0x0D},
{0x0D, 0x09, 0x0E, 0x0B},
{0x0B, 0x0D, 0x09, 0x0E}};
int i;
int j;
/* copy state[4][4] to tmp[4][4] */
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j){
tmp[i][j] = state[i][j];
}
}
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) {
state[i][j] = GMul(M[i][0], tmp[0][j]) ^ GMul(M[i][1], tmp[1][j])
^ GMul(M[i][2], tmp[2][j]) ^ GMul(M[i][3], tmp[3][j]);
}
}
return 0;
}
int aesEncrypt(uint8_t *key, uint32_t keyLen,uint8_t *pt, uint8_t *ct, uint32_t len) {
AesKey aesKey;
uint8_t *pos = ct;
const uint32_t *rk = aesKey.eK;
uint8_t out[BLOCKSIZE] = {0};
uint8_t actualKey[16] = {0};
uint8_t state[4][4] = {0};
int i;
int j;
if (NULL == key || NULL == pt || NULL == ct){
printf("param err.\n");
return -1;
}
if (keyLen > 16){
printf("keyLen must be 16.\n");
return -1;
}
if (len % BLOCKSIZE){
printf("inLen is invalid.\n");
return -1;
}
memcpy(actualKey, key, keyLen);
keyExpansion(actualKey, 16, &aesKey);
for (i = 0; i < len; i += BLOCKSIZE) {
loadStateArray(state, pt);
addRoundKey(state, rk);
for (j = 1; j < 10; ++j) {
rk += 4;
subBytes(state);
shiftRows(state);
mixColumns(state);
addRoundKey(state, rk);
}
subBytes(state);
shiftRows(state);
addRoundKey(state, rk+4);
storeStateArray(state, pos);
pos += BLOCKSIZE;
pt += BLOCKSIZE;
rk = aesKey.eK;
}
return 0;
}
int aesDecrypt(uint8_t *key, uint32_t keyLen,uint8_t *ct, uint8_t *pt, uint32_t len) {
AesKey aesKey;
uint8_t *pos = pt;
const uint32_t *rk = aesKey.dK;
uint8_t out[BLOCKSIZE] = {0};
uint8_t actualKey[16] = {0};
uint8_t state[4][4] = {0};
int i;
int j;
if (NULL == key || NULL == ct || NULL == pt){
printf("param err.\n");
return -1;
}
if (keyLen > 16){
printf("keyLen must be 16.\n");
return -1;
}
if (len % BLOCKSIZE){
printf("inLen is invalid.\n");
return -1;
}
memcpy(actualKey, key, keyLen);
keyExpansion(actualKey, 16, &aesKey);
for (i = 0; i < len; i += BLOCKSIZE) {
loadStateArray(state, ct);
addRoundKey(state, rk);
for (j = 1; j < 10; ++j) {
rk += 4;
invShiftRows(state);
invSubBytes(state);
addRoundKey(state, rk);
invMixColumns(state);
}
invSubBytes(state);
invShiftRows(state);
addRoundKey(state, rk+4);
storeStateArray(state, pos);
pos += BLOCKSIZE;
ct += BLOCKSIZE;
rk = aesKey.dK;
}
return 0;
}
3.4 编译、执行
[email protected]:/data/aes# gcc main.c aes.c
[email protected]:/data/aes# ./a.out
3. 5 结果
[email protected]:/data/aes# ./a.out
Datalen=33, PaddingLen=1
Before data:
Str:123456789012345678901234567890121
Hex[33]: 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 31
After data:
Str:123456789012345678901234567890121
Hex[48]: 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 31 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F
encryption:
data[48]: E7 E3 CA B1 23 CF 00 AF 2A 39 D7 B2 3F EC B8 F5 7E 7A 40 2A DC 95 06 DE EB 88 9D F4 A6 14 76 3D AC 7D 51 F4 98 9A 79 35 EC CE EF 74 50 03 30 25
decryption:
data[33]: 123456789012345678901234567890121
下一篇: 最简单的一个mvc实现
推荐阅读
-
PHP实现的AES双向加密解密功能示例【128位】
-
vue项目中使用AES实现密码加密解密(ECB和CBC两种模式)
-
PHP实现的AES 128位加密算法示例
-
AES ECB PKCS5/PKCS7 加密 python实现 支持中文
-
PHP7实现和CryptoJS的AES加密方式互通示例【AES-128-ECB加密】
-
Java实现AES的ECB、CBC、CFB模式
-
AES(128、ECB、PKCS5Padding)
-
使用ffmpeg视频切片并加密和视频AES-128加密后播放
-
iOS与PHP/Android AES128 ECB NoPadding加密
-
PHP aes (ecb)解密后乱码问题_PHP教程