欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

TensorFlow之Cifar-10图像分类任务

程序员文章站 2022-07-08 08:54:03
...

cifar-10数据集位置如下图:
TensorFlow之Cifar-10图像分类任务

import pickle
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
import random

random.seed(1)


def unpickle(file):
    fo = open(file, 'rb')
    dict = pickle.load(fo, encoding='latin1')
    fo.close()
    return dict


# 图像数据预处理下
def clean(data):
    data_0_shape = data.shape[0]
    print(data_0_shape)
    imgs = data.reshape(data.shape[0], 3, 32, 32)
    grayscale_imgs = imgs.mean(1)
    cropped_imgs = grayscale_imgs[:, 4:28, 4:28]
    img_data = cropped_imgs.reshape(data.shape[0], -1)
    img_size = np.shape(img_data)[1]
    means = np.mean(img_data, axis=1)
    meansT = means.reshape(len(means), 1)
    stds = np.std(img_data, axis=1)
    stdsT = stds.reshape(len(stds), 1)
    adj_stds = np.maximum(stdsT, 1.0 / np.sqrt(img_size))
    normalized = (img_data - meansT) / adj_stds
    return normalized


# 读取数据
def read_data(directory):
    names = unpickle('{}/batches.meta'.format(directory))[
        'label_names']  # ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
    print('names', names)

    data, labels = [], []
    for i in range(1, 6):
        filename = '{}/data_batch_{}'.format(directory, i)
        batch_data = unpickle(filename)
        if len(data) > 0:
            data = np.vstack((data, batch_data['data']))
            labels = np.hstack((labels, batch_data['labels']))
        else:
            data = batch_data['data']
            labels = batch_data['labels']

    # data的shape=(50000,3072) ,3072 = 32x32x3
    # labels的shape=(50000,)
    print("shape = ", np.shape(data), np.shape(labels))

    data = clean(data)
    data = data.astype(np.float32)
    return names, data, labels

#显示几张图片
def show_some_examples(names, data, labels):
    # data shape=  (50000, 576),576 = 24x24
    print("after data shape= ", data.shape)

    plt.figure()
    rows, cols = 4, 4
    random_idxs = random.sample(range(len(data)), rows * cols)
    for i in range(rows * cols):
        plt.subplot(rows, cols, i + 1)
        j = random_idxs[i]
        plt.title(names[labels[j]])
        img = np.reshape(data[j, :], (24, 24))
        plt.imshow(img, cmap='Greys_r')
        plt.axis('off')
    plt.tight_layout()
    plt.savefig('cifar_examples.png')
    plt.show()
cifar10_dir = 'F:/AI/Python/HXPyhon/PycharmProjects/CIFAR10_dataset/cifar-10-batches-py/'
names, data, labels = read_data(cifar10_dir)
show_some_examples(names, data, labels)

TensorFlow之Cifar-10图像分类任务


选择其中一张图片,查看结果

raw_data = data[4, :]
raw_img = np.reshape(raw_data, (24, 24))
plt.figure()
plt.imshow(raw_img, cmap='Greys_r')
plt.show()

x = tf.reshape(raw_data, shape=[-1, 24, 24, 1])
W = tf.Variable(tf.random_normal([5, 5, 1, 32]))
b = tf.Variable(tf.random_normal([32]))

conv = tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
conv_with_b = tf.nn.bias_add(conv, b)
conv_out = tf.nn.relu(conv_with_b)

k = 2
maxpool = tf.nn.max_pool(conv_out, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding='SAME')

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())

    W_val = sess.run(W)
    print('weights:')
    show_weights(W_val)

    conv_val = sess.run(conv)
    print('convolution results:')
    print(np.shape(conv_val))
    show_conv_results(conv_val)

    conv_out_val = sess.run(conv_out)
    print('convolution with bias and relu:')
    print(np.shape(conv_out_val))
    show_conv_results(conv_out_val)

    maxpool_val = sess.run(maxpool)
    print('maxpool after all the convolutions:')
    print(np.shape(maxpool_val))
    show_conv_results(maxpool_val)

TensorFlow之Cifar-10图像分类任务

weights:
TensorFlow之Cifar-10图像分类任务

convolution results:
(1, 24, 24, 32)
TensorFlow之Cifar-10图像分类任务

convolution with bias and relu:
(1, 24, 24, 32)
TensorFlow之Cifar-10图像分类任务

maxpool after all the convolutions:
(1, 12, 12, 32)
TensorFlow之Cifar-10图像分类任务


构建完整网络模型:

# 构建完整网络模型
x = tf.placeholder(tf.float32, [None, 24 * 24])
y = tf.placeholder(tf.float32, [None, len(names)])
W1 = tf.Variable(tf.random_normal([5, 5, 1, 64]))
b1 = tf.Variable(tf.random_normal([64]))
W2 = tf.Variable(tf.random_normal([5, 5, 64, 64]))
b2 = tf.Variable(tf.random_normal([64]))
W3 = tf.Variable(tf.random_normal([6 * 6 * 64, 1024]))
b3 = tf.Variable(tf.random_normal([1024]))
W_out = tf.Variable(tf.random_normal([1024, len(names)]))
b_out = tf.Variable(tf.random_normal([len(names)]))


def conv_layer(x, W, b):
    conv = tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
    conv_with_b = tf.nn.bias_add(conv, b)
    conv_out = tf.nn.relu(conv_with_b)
    return conv_out


def maxpool_layer(conv, k=2):
    return tf.nn.max_pool(conv, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding='SAME')


def model():
    x_reshaped = tf.reshape(x, shape=[-1, 24, 24, 1])

    conv_out1 = conv_layer(x_reshaped, W1, b1)
    maxpool_out1 = maxpool_layer(conv_out1)
    # 提出了LRN层,对局部神经元的活动创建竞争机制,使得其中响应比较大的值变得相对更大,并抑制其他反馈较小的神经元,增强了模型的泛化能力。
    # 推荐阅读http://blog.csdn.net/banana1006034246/article/details/75204013
    norm1 = tf.nn.lrn(maxpool_out1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75)
    conv_out2 = conv_layer(norm1, W2, b2)
    norm2 = tf.nn.lrn(conv_out2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75)
    maxpool_out2 = maxpool_layer(norm2)

    maxpool_reshaped = tf.reshape(maxpool_out2, [-1, W3.get_shape().as_list()[0]])
    local = tf.add(tf.matmul(maxpool_reshaped, W3), b3)
    local_out = tf.nn.relu(local)

    out = tf.add(tf.matmul(local_out, W_out), b_out)
    return out


learning_rate = 0.001
model_op = model()

cost = tf.reduce_mean(
    tf.nn.softmax_cross_entropy_with_logits(logits=model_op, labels=y)
)
train_op = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)

correct_pred = tf.equal(tf.argmax(model_op, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    onehot_labels = tf.one_hot(labels, len(names), axis=-1)
    onehot_vals = sess.run(onehot_labels)
    batch_size = 64
    print('batch size', batch_size)
    for j in range(0, 1000):
        avg_accuracy_val = 0.
        batch_count = 0.
        data_len = len(data)
        for i in range(0, len(data), batch_size):
            batch_data = data[i:i + batch_size, :]
            batch_onehot_vals = onehot_vals[i:i + batch_size, :]
            _, accuracy_val = sess.run([train_op, accuracy], feed_dict={x: batch_data, y: batch_onehot_vals})
            avg_accuracy_val += accuracy_val
            batch_count += 1.
            print("avg_accuracy_val=", avg_accuracy_val)
        avg_accuracy_val /= batch_count
        print('Epoch {}. Avg accuracy {}'.format(j, avg_accuracy_val))
相关标签: TensorFlow cifar10