Parallel Append
程序员文章站
2022-07-07 18:55:17
...
Pg 11 preview - Parallel Append (多表并行计算) sharding架构并行计算核心功能之一…
背景
- append是数据库执行计划中很场景的一个NODE,数据来自扫描多个对象的集合时,都需要APPEND。
- 比如:
- 扫描分区表
- 扫描主表(包含若干继承表时)
- UNION ALL语句。(union 暂时不支持)
- parallel append可以设计出非常灵活的架构,
- 例如sharding可以在数据库内核层面并行,不需要依赖中间件例如plproxy了。(暂时还不支持直接用foreign table+inherit的模式,不过可以用pg_pathman)
parallel append 参数开关
enable_parallel_append (boolean)
- Enables or disables the query planner’s use of parallel-aware append plan
- default is on.
测试
# 全局可使用WORKER进程数
max_worker_processes = 128
# 全局可开并行计算的WORKER进程数
max_parallel_workers = 128
# 并行计算COST计算依赖的几个参数
set parallel_tuple_cost =0;
set parallel_setup_cost =0;
# 最小多大的表才会使用并行计算
set min_parallel_index_scan_size =0;
set min_parallel_table_scan_size =0;
# 每个gather可以创建多个worker process
set max_parallel_workers_per_gather =32;
生成测试数据
1、创本地分区表
create unlogged table p(id int8, info text) partition by hash(id);
CREATE unlogged TABLE p0 PARTITION OF p FOR VALUES WITH (MODULUS 4, REMAINDER 0);
CREATE unlogged TABLE p1 PARTITION OF p FOR VALUES WITH (MODULUS 4, REMAINDER 1);
CREATE unlogged TABLE p2 PARTITION OF p FOR VALUES WITH (MODULUS 4, REMAINDER 2);
CREATE unlogged TABLE p3 PARTITION OF p FOR VALUES WITH (MODULUS 4, REMAINDER 3);
2、写入1亿
insert into p select generate_series(1,100000000), 'test';
3 设置分区并行度为0,防止单个分区并行扫描太快,看不出性能差异。
alter table p0 set ( parallel_workers=0 );
alter table p1 set ( parallel_workers=0 );
alter table p2 set ( parallel_workers=0 );
alter table p3 set ( parallel_workers=0 );
当每个分区都返回大量数据时
- 这里测试两个CASE,
- 一个含并行聚合,一个不含并行计算(全量返回)。
- 实际上parallel append适合一路并行,
- 不适合上层没什么计算,串行接收大量APPEND数据的场景。
1、含并行聚合(上层直接对接partial agg worker,所以流式处理掉了),并行append
postgres=# set enable_parallel_append =on;
SET
postgres=# explain (analyze,verbose) select count(*) from p;
QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------------------------------
Finalize Aggregate (cost=850840.80..850840.81 rows=1 width=8) (actual time=6400.860..6400.861 rows=1 loops=1)
Output: count(*)
-> Gather (cost=850840.78..850840.79 rows=3 width=8) (actual time=5630.195..6400.849 rows=4 loops=1)
Output: (PARTIAL count(*))
Workers Planned: 3
Workers Launched: 3
-> Partial Aggregate (cost=850840.78..850840.79 rows=1 width=8) (actual time=6133.146..6133.147 rows=1 loops=4)
Output: PARTIAL count(*)
Worker 0: actual time=6253.609..6253.609 rows=1 loops=1
Worker 1: actual time=6395.587..6395.588 rows=1 loops=1
Worker 2: actual time=6253.407..6253.407 rows=1 loops=1
-> Parallel Append (cost=0.00..770195.40 rows=32258152 width=0) (actual time=0.027..4772.225 rows=25000000 loops=4)
Worker 0: actual time=0.030..4882.573 rows=24999575 loops=1
Worker 1: actual time=0.030..5025.288 rows=25002155 loops=1
Worker 2: actual time=0.035..4906.483 rows=25002850 loops=1
-> Seq Scan on public.p3 (cost=0.00..385180.36 rows=25002936 width=0) (actual time=0.033..3137.362 rows=25002850 loops=1)
Worker 2: actual time=0.033..3137.362 rows=25002850 loops=1
-> Seq Scan on public.p1 (cost=0.00..385168.96 rows=25002196 width=0) (actual time=0.030..3253.775 rows=25002155 loops=1)
Worker 1: actual time=0.030..3253.775 rows=25002155 loops=1
-> Seq Scan on public.p0 (cost=0.00..385129.04 rows=24999604 width=0) (actual time=0.029..3110.662 rows=24999575 loops=1)
Worker 0: actual time=0.029..3110.662 rows=24999575 loops=1
-> Seq Scan on public.p2 (cost=0.00..385066.36 rows=24995536 width=0) (actual time=0.011..2512.500 rows=24995420 loops=1)
Planning time: 0.261 ms
Execution time: 6463.125 ms
(24 rows)
2、串行APPEND
postgres=# set enable_parallel_append =off;
SET
postgres=# explain (analyze,verbose) select count(*) from p;
QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------------------
Aggregate (cost=1790545.40..1790545.41 rows=1 width=8) (actual time=21705.971..21705.972 rows=1 loops=1)
Output: count(*)
-> Append (cost=0.00..1540544.72 rows=100000272 width=0) (actual time=0.010..16055.808 rows=100000000 loops=1)
-> Seq Scan on public.p0 (cost=0.00..385129.04 rows=24999604 width=0) (actual time=0.010..2214.981 rows=24999575 loops=1)
-> Seq Scan on public.p1 (cost=0.00..385168.96 rows=25002196 width=0) (actual time=0.011..2225.458 rows=25002155 loops=1)
-> Seq Scan on public.p2 (cost=0.00..385066.36 rows=24995536 width=0) (actual time=0.013..2264.015 rows=24995420 loops=1)
-> Seq Scan on public.p3 (cost=0.00..385180.36 rows=25002936 width=0) (actual time=0.013..2214.180 rows=25002850 loops=1)
Planning time: 0.111 ms
Execution time: 21706.010 ms
(9 rows)
3、不含并行聚合(上层返回所有数据,性能反而下降),并行append
postgres=# explain (analyze,verbose)
select * from p;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------------
Gather (cost=0.00..770195.40 rows=100000272 width=13) (actual time=0.238..72791.861 rows=100000000 loops=1)
Output: p3.id, p3.info
Workers Planned: 3
Workers Launched: 3
-> Parallel Append (cost=0.00..770195.40 rows=32258152 width=13) (actual time=0.019..4450.007 rows=25000000 loops=4)
Worker 0: actual time=0.021..4713.479 rows=24999575 loops=1
Worker 1: actual time=0.021..4705.110 rows=25002155 loops=1
Worker 2: actual time=0.023..4710.256 rows=25002850 loops=1
-> Seq Scan on public.p3 (cost=0.00..385180.36 rows=25002936 width=13) (actual time=0.022..2955.118 rows=25002850 loops=1)
Output: p3.id, p3.info
Worker 2: actual time=0.022..2955.118 rows=25002850 loops=1
-> Seq Scan on public.p1 (cost=0.00..385168.96 rows=25002196 width=13) (actual time=0.020..2949.203 rows=25002155 loops=1)
Output: p1.id, p1.info
Worker 1: actual time=0.020..2949.203 rows=25002155 loops=1
-> Seq Scan on public.p0 (cost=0.00..385129.04 rows=24999604 width=13) (actual time=0.021..2957.799 rows=24999575 loops=1)
Output: p0.id, p0.info
Worker 0: actual time=0.021..2957.799 rows=24999575 loops=1
-> Seq Scan on public.p2 (cost=0.00..385066.36 rows=24995536 width=13) (actual time=0.009..1919.412 rows=24995420 loops=1)
Output: p2.id, p2.info
Planning time: 0.156 ms
Execution time: 76464.568 ms
(21 rows)
4、串行APPEND
postgres=# set enable_parallel_append =off;
SET
postgres=# explain (analyze,verbose)
select * from p;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------
Append (cost=0.00..1540544.72 rows=100000272 width=13) (actual time=0.009..14691.301 rows=100000000 loops=1)
-> Seq Scan on public.p0 (cost=0.00..385129.04 rows=24999604 width=13) (actual time=0.008..1930.118 rows=24999575 loops=1)
Output: p0.id, p0.info
-> Seq Scan on public.p1 (cost=0.00..385168.96 rows=25002196 width=13) (actual time=0.012..1946.220 rows=25002155 loops=1)
Output: p1.id, p1.info
-> Seq Scan on public.p2 (cost=0.00..385066.36 rows=24995536 width=13) (actual time=0.011..1911.555 rows=24995420 loops=1)
Output: p2.id, p2.info
-> Seq Scan on public.p3 (cost=0.00..385180.36 rows=25002936 width=13) (actual time=0.013..1933.505 rows=25002850 loops=1)
Output: p3.id, p3.info
Planning time: 0.111 ms
Execution time: 18336.654 ms
(11 rows)
当每个分区仅返回少量数据时
1、并行append
postgres=# set enable_parallel_append =on;
SET
postgres=# explain (analyze,verbose) select count(*) from p where id=1;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------
Aggregate (cost=895183.26..895183.27 rows=1 width=8) (actual time=2315.544..2315.545 rows=1 loops=1)
Output: count(*)
-> Gather (cost=0.00..895183.25 rows=4 width=0) (actual time=1769.974..2315.536 rows=1 loops=1)
Workers Planned: 3
Workers Launched: 3
-> Parallel Append (cost=0.00..895183.25 rows=1 width=0) (actual time=1591.915..2169.437 rows=0 loops=4)
Worker 0: actual time=0.025..2310.110 rows=1 loops=1
Worker 1: actual time=2286.699..2286.699 rows=0 loops=1
Worker 2: actual time=2311.206..2311.206 rows=0 loops=1
-> Seq Scan on public.p3 (cost=0.00..447687.70 rows=1 width=0) (actual time=2311.205..2311.205 rows=0 loops=1)
Filter: (p3.id = 1)
Rows Removed by Filter: 25002850
Worker 2: actual time=2311.205..2311.205 rows=0 loops=1
-> Seq Scan on public.p1 (cost=0.00..447674.45 rows=1 width=0) (actual time=2286.697..2286.697 rows=0 loops=1)
Filter: (p1.id = 1)
Rows Removed by Filter: 25002155
Worker 1: actual time=2286.697..2286.697 rows=0 loops=1
-> Seq Scan on public.p0 (cost=0.00..447628.05 rows=1 width=0) (actual time=0.024..2310.109 rows=1 loops=1)
Filter: (p0.id = 1)
Rows Removed by Filter: 24999574
Worker 0: actual time=0.024..2310.109 rows=1 loops=1
-> Seq Scan on public.p2 (cost=0.00..447555.20 rows=1 width=0) (actual time=1769.730..1769.730 rows=0 loops=1)
Filter: (p2.id = 1)
Rows Removed by Filter: 24995420
Planning time: 0.138 ms
Execution time: 2365.247 ms
(26 rows)
2、串行APPEND
postgres=# set enable_parallel_append =off;
SET
postgres=# explain (analyze,verbose) select count(*) from p where id=1;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------
Aggregate (cost=1790545.41..1790545.42 rows=1 width=8) (actual time=6989.018..6989.018 rows=1 loops=1)
Output: count(*)
-> Append (cost=0.00..1790545.40 rows=4 width=0) (actual time=0.011..6989.011 rows=1 loops=1)
-> Seq Scan on public.p0 (cost=0.00..447628.05 rows=1 width=0) (actual time=0.011..1788.032 rows=1 loops=1)
Filter: (p0.id = 1)
Rows Removed by Filter: 24999574
-> Seq Scan on public.p1 (cost=0.00..447674.45 rows=1 width=0) (actual time=1732.249..1732.249 rows=0 loops=1)
Filter: (p1.id = 1)
Rows Removed by Filter: 25002155
-> Seq Scan on public.p2 (cost=0.00..447555.20 rows=1 width=0) (actual time=1731.916..1731.916 rows=0 loops=1)
Filter: (p2.id = 1)
Rows Removed by Filter: 24995420
-> Seq Scan on public.p3 (cost=0.00..447687.70 rows=1 width=0) (actual time=1736.809..1736.809 rows=0 loops=1)
Filter: (p3.id = 1)
Rows Removed by Filter: 25002850
Planning time: 0.259 ms
Execution time: 6989.060 ms
(17 rows)
测试union all的parallel append
postgres=# set enable_parallel_append =on;
SET
postgres=#
explain (analyze,verbose)
select count(*) from p0 where id=1
union all
select count(*) from p1 where id=1
union all
select count(*) from p2 where id=1
union all
select count(*) from p3 where id=1;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------
Gather (cost=447627.70..895181.50 rows=4 width=8) (actual time=1855.298..2363.268 rows=4 loops=1)
Output: (count(*))
Workers Planned: 3
Workers Launched: 3
-> Parallel Append (cost=447627.70..895181.50 rows=1 width=8) (actual time=2215.816..2215.817 rows=1 loops=4)
Worker 0: actual time=2356.711..2356.712 rows=1 loops=1
Worker 1: actual time=2336.656..2336.657 rows=1 loops=1
Worker 2: actual time=2314.918..2314.919 rows=1 loops=1
-> Aggregate (cost=447686.63..447686.64 rows=1 width=8) (actual time=2314.917..2314.918 rows=1 loops=1)
Output: count(*)
Worker 2: actual time=2314.917..2314.918 rows=1 loops=1
-> Seq Scan on public.p3 (cost=0.00..447686.62 rows=1 width=0) (actual time=2314.906..2314.906 rows=0 loops=1)
Output: p3.id, p3.info
Filter: (p3.id = 1)
Rows Removed by Filter: 25002850
Worker 2: actual time=2314.906..2314.906 rows=0 loops=1
-> Aggregate (cost=447673.95..447673.96 rows=1 width=8) (actual time=2336.655..2336.655 rows=1 loops=1)
Output: count(*)
Worker 1: actual time=2336.655..2336.655 rows=1 loops=1
-> Seq Scan on public.p1 (cost=0.00..447673.95 rows=1 width=0) (actual time=2336.646..2336.646 rows=0 loops=1)
Output: p1.id, p1.info
Filter: (p1.id = 1)
Rows Removed by Filter: 25002155
Worker 1: actual time=2336.646..2336.646 rows=0 loops=1
-> Aggregate (cost=447627.70..447627.71 rows=1 width=8) (actual time=2356.710..2356.710 rows=1 loops=1)
Output: count(*)
Worker 0: actual time=2356.710..2356.710 rows=1 loops=1
-> Seq Scan on public.p0 (cost=0.00..447627.70 rows=1 width=0) (actual time=0.027..2356.702 rows=1 loops=1)
Output: p0.id, p0.info
Filter: (p0.id = 1)
Rows Removed by Filter: 24999574
Worker 0: actual time=0.027..2356.702 rows=1 loops=1
-> Aggregate (cost=447553.75..447553.76 rows=1 width=8) (actual time=1854.978..1854.979 rows=1 loops=1)
Output: count(*)
-> Seq Scan on public.p2 (cost=0.00..447553.75 rows=1 width=0) (actual time=1854.973..1854.973 rows=0 loops=1)
Output: p2.id, p2.info
Filter: (p2.id = 1)
Rows Removed by Filter: 24995420
Planning time: 0.160 ms
Execution time: 2413.145 ms
(40 rows)
测试本地继承表的parallel append
1、准备数据
create table pp (like p);
create table pp0 (like p) inherits(pp);
create table pp1 (like p) inherits(pp);
create table pp2 (like p) inherits(pp);
create table pp3 (like p) inherits(pp);
insert into pp0 select * from p0;
insert into pp1 select * from p1;
insert into pp2 select * from p2;
insert into pp3 select * from p3;
alter table pp set (parallel_workers =0);
alter table pp0 set (parallel_workers =0);
alter table pp1 set (parallel_workers =0);
alter table pp2 set (parallel_workers =0);
alter table pp3 set (parallel_workers =0);
2、parallel append
postgres=# set enable_parallel_append =on;
SET
postgres=# explain (analyze,verbose) select count(*) from pp where id=1;
QUERY PLAN
---------------------------------------------------------------------------------------------------------------------------------------
Finalize Aggregate (cost=896183.57..896183.58 rows=1 width=8) (actual time=2726.483..2726.483 rows=1 loops=1)
Output: count(*)
-> Gather (cost=896183.25..896183.56 rows=3 width=8) (actual time=2644.834..2726.474 rows=4 loops=1)
Output: (PARTIAL count(*))
Workers Planned: 3
Workers Launched: 3
-> Partial Aggregate (cost=895183.25..895183.26 rows=1 width=8) (actual time=2617.010..2617.010 rows=1 loops=4)
Output: PARTIAL count(*)
Worker 0: actual time=2469.011..2469.011 rows=1 loops=1
Worker 1: actual time=2721.059..2721.059 rows=1 loops=1
Worker 2: actual time=2633.534..2633.534 rows=1 loops=1
-> Parallel Append (cost=0.00..895183.25 rows=1 width=0) (actual time=1999.759..2617.002 rows=0 loops=4)
Worker 0: actual time=0.034..2469.004 rows=1 loops=1
Worker 1: actual time=2721.048..2721.048 rows=0 loops=1
Worker 2: actual time=2633.525..2633.525 rows=0 loops=1
-> Seq Scan on public.pp3 (cost=0.00..447687.70 rows=1 width=0) (actual time=2633.523..2633.523 rows=0 loops=1)
Filter: (pp3.id = 1)
Rows Removed by Filter: 25002850
Worker 2: actual time=2633.523..2633.523 rows=0 loops=1
-> Seq Scan on public.pp1 (cost=0.00..447674.45 rows=1 width=0) (actual time=2721.047..2721.047 rows=0 loops=1)
Filter: (pp1.id = 1)
Rows Removed by Filter: 25002155
Worker 1: actual time=2721.047..2721.047 rows=0 loops=1
-> Seq Scan on public.pp0 (cost=0.00..447628.05 rows=1 width=0) (actual time=0.034..2469.002 rows=1 loops=1)
Filter: (pp0.id = 1)
Rows Removed by Filter: 24999574
Worker 0: actual time=0.034..2469.002 rows=1 loops=1
-> Seq Scan on public.pp2 (cost=0.00..447555.20 rows=1 width=0) (actual time=2644.426..2644.426 rows=0 loops=1)
Filter: (pp2.id = 1)
Rows Removed by Filter: 24995420
-> Seq Scan on public.pp (cost=0.00..0.00 rows=1 width=0) (actual time=0.002..0.002 rows=0 loops=1)
Filter: (pp.id = 1)
Planning time: 0.080 ms
Execution time: 2777.958 ms
(34 rows)
参考链接
- https://blog.csdn.net/weixin_34378969/article/details/89831780
上一篇: 记录AES 256算法遇到 Illegal key size or default parameters错的解决办法
下一篇: java ARE加密Illegal key size or default parameters和null问题
推荐阅读
-
append函数是什么意思(python入门详细教程)
-
append函数是什么意思(python入门详细教程)
-
对numpy.append()里的axis的用法详解
-
C#使用Parallel类进行多线程编程实例
-
Python列表append和+的区别浅析
-
append和appendTo的区别以及appendChild用法
-
jquery append与appendTo方法比较
-
Python中循环后使用list.append()数据被覆盖问题的解决
-
jQuery添加新内容的四个常用方法分析【append,prepend,after,before】
-
在Python中操作列表之List.append()方法的使用